

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016 **Cliffside Park Public Schools**

GRADE: 7

Grade 7: Integrated Science

New Jersey
Student Learning Standards
SCIENCE

Unit 1: Overview
Unit 1: Structure and Properties of Matter
Grade: 7
Content Area: Physical Science
Pacing: 20 Instructional Days
Essential Question
How is it that everything is made of stardust?
Student Learning Objectives (Performance Expectations)
MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures.
MS-PS1-2. Analyze and interpret data on the properties of substances before and after the substances interact to determine if a chemical reaction has occurred.
Unit Summary

BOE APPROVAL: August 2016

Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic properties and are made from a single type of atom or molecule. They also provide a molecular level accounts to explain states of matter and changes between states. The crosscutting concepts of cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and technology, and the influence of science, engineering and technology on society and the natural world provide a framework for understanding the disciplinary core ideas. Students demonstrate grade appropriate proficiency in developing and using models, and obtaining, evaluating, and communicating information. Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.

Technical Terms

Electron Cloud model, atoms, molecule, subatomic, nucleus, proton, neutron, electron, particle, electron cloud, isotopes, transmutation, alpha particle, beta particle, atomic scale, molecular scale

Formative Assessment Measures

Part A: If the universe is not made of Legos[®], then what is it made of?

Students who understand the concepts are able to:

Develop a model of a simple molecule.

Use the model of the simple molecule to describe its atomic composition.

Develop a model of an extended structure.

Use the model of the extended structure to describe its repeating subunits.

[Boundary: The substructure of atoms and the periodic table are learned in high school chemistry.]

Part B: Is it possible to tell if two substances mixed or if they reacted with each other?

Students who understand the concepts are able to:

Analyze and interpret data to determine similarities and differences from results of chemical reactions between substances before and after they undergo a chemical process.

Analyze and interpret data on the properties of substances before and after they undergo a chemical process.

Identify and describe possible correlation and causation relationships evidenced in chemical reactions.

Make logical and conceptual connections between evidence that chemical reactions have occurred and explanations of the properties of substances before and after they undergo a chemical process.

Interdisciplinary Connections

• •	
NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively. (MS-PS1-1),(MS-PS1-2) MP.2
technical texts, attending to the precise details of explanations	Model with mathematics. (MS-PS1-1) MP.4
or descriptions.(MS-PS1-2)RST.6-8.1	Use ratio and rate reasoning to solve real-world and mathematical problems. (MS-PS1-1),(MS-
Integrate quantitative or technical information expressed in	PS1-2) 6.RP.A.3
words in a text with a version of that information expressed	Use numbers expressed in the form of a single digit times an integer power of 10 to estimate very
visually (e.g., in a flowchart, diagram, model, graph, or table).	large or very small quantities, and to express how many times as much one is than the other.
(MS-PS1-1),(MS-PS1-2) RST.6-8.7	(MS-PS1-1) 8.EE.A.3
	Display numerical data in plots on a number line, including dot plots, histograms, and box plots.

Cliffside Park Public Schools

GRADE: 7

		(MS-PS1-2) 6.SP.B.4		
		Summarize numerical data sets ir	n relation to their context. (MS-PS1-2) 6.SP.B.5	
Core Instructional Materials	Can include: Textbooks Series	an include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP6, CRP	7, CRP8 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3,	. 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8	3.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1,	
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual	Multimedia	Graphic organizers	Tiered activities	
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks	
Annotation guides	Answer masking		Self-directed activities	
Think-pair- share	Answer eliminator			
Visual aides	Highlighter			
Modeling	Color contrast			
Cognates				

PHYSICAL SCIENCE MS. Matter and Its Interactions MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. Clarification Statement: Emphasis is on developing models of molecules that vary in complexity. Examples of simple molecules could include ammonia and methanol. Examples of extended structures could include sodium chloride or diamonds. Examples of molecular-level models could include drawings, 3D ball and stick structures, or computer representations showing different molecules with different types of atoms. Assessment Boundary: Assessment does not include valence electrons and bonding energy, discussing the ionic nature of subunits of complex structures, or a complete description of all individual atoms in a complex molecule or extended structure is not required. Evidence Statements: MS-PS1-1 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts Developing and Using Models** Scale, Proportion, and Quantity PS1.A: Structure and Properties of Matter Substances are made from different types of atoms, Time, space, and energy phenomena can be Modeling in 6–8 builds on K–5 and progresses to developing, using and revising models to describe, test, which combine with one another in various ways. observed at various scales using models to study and predict more abstract phenomena and design Atoms form molecules that range in size from two systems that are too large or too small. to thousands of atoms. systems. Develop a model to predict and/or describe Solids may be formed from molecules, or they may phenomena. be extended structures with repeating subunits (e.g., crystals). Connections to other DCIs in this grade-band: MS.ESS2.C Articulation of DCIs across grade-bands: 5.PS1.A ; HS.PS1.A ; HS.ESS1.A NJSLS- ELA: RST.6-8.7 NJSLS- Math: MP.2, MP.4, 6.RP.A.3, 8.EE.A.3 5E Model MS-PS1-1. Develop models to describe the atomic composition of simple molecules and extended structures. What is an Atom? To introduce this topic, have students view the following video. This video will provide a basic introduction into Engage structure of atoms and molecules. Anticipatory Set http://www.makemegenius.com/science-videos/grade_7/all-about-atoms-and-molecules-for-kids Exploration Have the students work in groups. Each group will be given a different simple molecule. Ex: ammonia, methanol. Research their

Cliffside Park Public Schools

GRADE: 7

Student Inquiry molect				
	ule, find out its composition, identify the type of bond, and uses of the compound.			
Marsh	mallow Molecules			
http://	http://betterlesson.com/lesson/634009/marshmallow-molecules			
Digital	Models:			
https:/	//phet.colorado.edu/en/simulation/build-a-molecule			
Resear	rch the molecular structure of ammonia and methanol. Using PowerPoint, work in a group to create a digital model of these			
simple	e molecules structures.			
In thes	se lessons:			
Teache	ers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
Studer	nts Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
Explanation Topics	to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):			
Concepts and Practices PS1.A:	Structure and Properties of Matter			
Substa	Substances are made from different types of atoms, which combine with one another in various ways. Atoms form molecules that range			
<u>in size</u>	from two to thousands of atoms.			
Solids	may be formed from molecules, or they may be extended structures with repeating subunits (e.g., crystals). (MS-PS1-1)			
Elaboration Have s	students create a digital model of a complex, extended structure. Some extended structures the students' research can include:			
Diamo	nds, Sugar, Nylon.			
Extension Activity	//phet.colorado.edu/en/simulation/build-a-molecule			
Assess	ment Task A			
Evaluation Studer	nts will work in groups to develop a model using a digital presentation method (Powerpoint, Google Slides, Prezi, etc) The			
Assessment Tasks model	s must describe the atomic composition of simple molecules and extended structures.			
Develo	op a model to predict and/or describe phenomena.			

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

PHYSICA MS. Matter and Its Interactions	L SCIENCE	
MS-PS1-2. Analyze and interpret data on the properties of substances before a	and after the substances interact to determine if a chen	nical reaction has
occurred.		
Clarification Statement: Examples of reactions could include burning sugar or st	eel wool, fat reacting with sodium hydroxide, and mixing	zinc with hydrogen
chloride.		, , , , , , , , , , , , , , , , , , , ,
Assessment Boundary: Assessment is limited to analysis of the following proper	ties: density, melting point, boiling point, solubility, flam	mability, and odor.
Evidence Statements: MS-PS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	PS1.A: Structure and Properties of Matter	Patterns
Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative	Each pure substance has characteristic physical and	Macroscopic patterns
analysis to investigations, distinguishing between correlation and causation,	chemical properties (for any bulk quantity under given	are related to the nature
and basic statistical techniques of data and error analysis.	conditions) that can be used to identify it.	of microscopic and
Analyze and interpret data to determine similarities and differences in findings.	PS1.B: Chemical Reactions	atomic-level structure.
Connections to Nature of Science Scientific Knowledge is Based on Empirical	Substances react chemically in characteristic ways. In a	
Evidence	chemical process, the atoms that make up the original	
Science knowledge is based upon logical and conceptual connections between	substances are regrouped into different molecules, and	
evidence and explanations.	these new substances have different properties from	
	those of the reactants.	
Connections to other DCIs in this grade-band: MS.PS3.D ; MS.LS1.C ; MS.ESS2./	A	
Articulation of DCIs across grade-bands: N/		
CCSS- ELA: RST.6-8.1, RST.6-8.7		
CCSS- Math: MP.2, 6.RP.A.3, 6.SP.B.4, 6.SP.B.5		
5E N	Лodel	
MS-PS1-2. Analyze and interpret data on the properties of substances before a	and after the substances interact to determine if a chen	nical reaction has
occurred.		
Engage Amazing Chemical Reactions: https://www.yout	ube.com/watch?v=FofPjj7v414	

Anticipatory Set	http://betterlesson.com/lesson/634016/chemical-reactions-un-notes
	http://www.education.com/science-fair/article/balloon-gas-chemical-reaction/
	Students are placed in small groups, and given samples of baking soda and white vinegar. In their groups, they must observe and
	classify each substance's individual physical properties. Using a graphic organizer, a list of each substance's properties will be
	collaboratively developed. After the initial investigation, one representative from each student group will share their group's list
	of physical properties with the whole class. During this time, students from different groups can record additional properties or
	correct mislabeled properties. The teacher will then briefly explain the exploration activity and appropriate safety procedures to
	students. Prior to the exploration activity, the teacher may ask the following guiding questions to engage students:
	\cdot What do you think will happen when baking soda and vinegar come in contact (what will be produced)?
	· What do you think will happen to the balloon attached?
Exploration	Using the funnel, each student group will add 2 tablespoons of baking soda to each balloon (two people may be needed for this;
Student Inquiry	one person to hold the balloon open and the other person to put the baking soda inside of the balloon). Then the group will pour
Student inquiry	4 ounces of vinegar into the bottle. Students will carefully fit the balloon over the bottle opening, and be careful not to drop the
	baking soda into the vinegar yet. Once the balloon is fitted snugly on the nozzle, students will hold up the balloon and allow the
	baking soda to fall into the vinegar. Students will observe the chemical reaction and effect on the balloon and record
	observations/data/visuals in their science journals.
	Students will respond to the following prompts in their science journals following this exploration activity in words and using
	pictorial representations:
	· Which two substances combined?
	· What happened when the two substances combined? How do you know?
	\cdot What was formed as a product of the reaction? Explain your reasoning.
	\cdot Why is this a chemical reaction? Use evidence to support your thinking.
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation Concepts and Practices	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS1.A: Structure and Properties of Matter
	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can
	be used to identify it. (MS-PS1-2)
	PS1.B: Chemical Reactions
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 7

regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-2) Student groups will reassemble and follow the same procedure from the exploration activity. However, the vinegar component will be replaced with a "mystery substance". Each group will receive a different mystery substance (water, hydrogen peroxide) to combine with the baking soda. Following the experiment, students will have to determine whether or not a chemical reaction took place. If time permits, each group of students will research (using online resources) a career in the field of Chemistry in pursuit of the following information: Elaboration Briefly describe the purpose of this job. Extension Activity What are some specific tasks? What kind of education and experience is required? Describe the kinds of places that people with this job might work. (For example, in a lab, outside, or in an office?) In what types of companies do people with this job work? Using this research as a guide, each individual student of the group will create a narrative piece describing a day in the life of a person with that particular profession. Assessment Task A: Analysis & Interpretation of Data Analyze and interpret data to determine similarities and differences in findings. Evaluation Have students work independently to summarize, in writing, if a chemical reaction has occurred. Students should include Assessment Tasks evidence based upon observations from exploration activity.

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

Unit 2: Overview
Unit 2: Interactions of Matter
Grade: 7
Content Area: Physical Science
Pacing: 20 Instructional Days
Essential Question
How can we trace synthetic materials back to natural ingredients?
Student Learning Objectives (Performance Expectations)
MS-PS1-3. Gather and make sense of information to describe that synthetic materials come from natural resources and impact society.
MS-PS1-4. Develop a model that predicts and describes changes in particle motion, temperature, and state of a pure substance when thermal energy is added or
removed.
Unit Summary
Students build understandings of what occurs at the atomic and molecular scale. Students apply their understanding that pure substances have characteristic
properties and are made from a single type of atom or molecule. They also provide a molecular level accounts to explain states of matter and changes between
states. The crosscutting concepts of cause and effect, scale, proportion and quantity, structure and function, interdependence of science, engineering, and
technology, and the influence of science, engineering and technology on society and the natural world provide a framework for understanding the disciplinary
core ideas. Students demonstrate grade appropriate proficiency in developing and using models, and obtaining, evaluating, and communicating information.
Students are also expected to use the scientific and engineering practices to demonstrate understanding of the core ideas.
Technical Terms
Molecular level, thermal energy, radiation, conduction, thermal conductor, thermal insulator, specific heat, thermal contraction, thermal expansion
Formative Assessment Measures
Part A: How can you tell what the molecules are doing in a substance?
Students who understand the concepts are able to:
Develop a model that predicts and describes changes in particle motion that could include molecules or inert atoms or pure substances.
Use cause-and-effect relationships to predict changes in particle motion, temperature, and state of a pure substance when thermal energy is added or removed
in natural or designed systems.
Part B: How can we trace synthetic materials back to natural ingredients?
Students who understand the concepts are able to:

BOE APPROVAL: August 2016

Obtain, evaluate, and communicate information to show that synthetic materials come from natural resources and affect society.

Gather, read, and synthesize information about how synthetic materials formed from natural resources affect society.

Assess the credibility, accuracy, and possible bias of each publication and methods used within the publication.

Describe how information about how synthetic materials formed from natural resources affect society is supported or not supported by evidence.

Interdisciplinary Connections				
N	NJSLS- ELA		NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and technical texts, attending to the precise details of explanations or descriptions. (MS-PS1-3)RST.6-8.1 Integrate quantitative or technical information expressed in words in		Understand that positive and negative numbers are used together to describe quantities having opposite directions or values (e.g., temperature above/below zero, elevation above/below sea level, credits/debits, positive/negative electric charge); use positive and s in negative numbers to represent quantities in real-world contexts, explaining the meaning of 0 in each situation. (MS-PS1-4) 6.NS.C.5		
others while avoiding plagiarism and following a standard format for citation. (MS-PS1-3) WHST.6-8.8				
Core Instructional Materials	Can include: Textbooks Series, Lab Ma	iterials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.A.4, 8.2.8.A.5, 8.2.8.B.1			
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual	Multimedia	Graphic organizers	Tiered activities	
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks	

Cliffside Park Public Schools

GRADE: 7

SUBJECT: SCIENCE Grade 7

Annotation guides	Answer masking	Self-directed activities
Think-pair- share	Answer eliminator	
Visual aides	Highlighter	
Modeling	Color contrast	
Cognates		

	PHYSICAL SCIENCE	
MS. Matter and Its Interactions		
MS-PS1-3. Gather and make sense of infor	mation to describe that synthetic materials come f	rom natural resources and impact society.
Clarification Statement: Emphasis is on nat	ural resources that undergo a chemical process to f	orm the synthetic material. Examples of new materials could
include new medicine, foods, and alternativ	<i>v</i> e fuels.	
Assessment Boundary: Assessment is limite	ed to qualitative information.	
Evidence Statements: MS-PS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Obtaining, Evaluating, and	PS1.A: Structure and Properties of Matter	Structure and Function
Communicating Information	Each pure substance has characteristic physical	Structures can be designed to serve particular functions by taking
Obtaining, evaluating, and communicating	and chemical properties (for any bulk quantity	into account properties of different materials, and how materials
information in 6–8 builds on K–5 and	under given conditions) that can be used to	can be shaped and used.
progresses to evaluating the merit and	identify it.	Connections to Engineering, Technology, and Applications of
validity of ideas and methods.	PS1.B: Chemical Reactions	Science
Gather, read, and synthesize information	Substances react chemically in characteristic ways.	Interdependence of Science, Engineering, and Technology
from multiple appropriate sources and	In a chemical process, the atoms that make up the	Engineering advances have led to important discoveries in
assess the credibility, accuracy, and	original substances are regrouped into different	virtually every field of science, and scientific discoveries have led
possible bias of each publication and	molecules, and these new substances have	to the development of entire industries and engineered systems.
methods used, and describe how they are	different properties from those of the reactants.	Influence of Science, Engineering and Technology on Society
supported or not supported by evidence.		and the Natural World
		The uses of technologies and any limitation on their use are
		driven by individual or societal needs, desires, and values; by the
		findings of scientific research; and by differences in such factors
		as climate, natural resources, and economic conditions. Thus
		technology use varies from region to region and over time.
Connections to other DCIs in this grade-ba	nd: MS.LS2.A ; MS.LS4.D ; MS.ESS3.A ; MS.ESS3.C	•
Articulation of DCIs across grade-bands: H	S.PS1.A ; HS.LS2.A ; HS.LS4.D ; HS.ESS3.A	
NJSLS- ELA: RST.6-8.1, WHST.6-8.8		
NJSLS- Math: N/A		

Cliffside Park Public Schools

GRADE: 7

BOE APPROVAL: August 2016

SUBJECT: SCIENCE Grade 7

	5E Model
MS-PS1-3. Gather and ma	ake sense of information to describe that synthetic materials come from natural resources and impact society.
	Poster paper will be placed around the room. Each poster will have a natural resource as a title Trees, Oil, Soil, Natural Gas. Students
	will take post-its which includes common materials we use from Earth and place them under the natural resource posted associated
Engage	with that the production of that material.
Anticipatory Set	Use the following graph: Common Materials We Use from Earth
	https://www.ck12.org/earth-science/Materials-Humans-Use/lesson/Materials-Humans-Use/?referrer=concept_details
	Clothing Matters
Exploration	http://www.mineralseducationcoalition.org/pdfs/study/studyoftheearth.pdf
Student Inquiry	https://www.ck12.org/earth-science/Materials-Humans-Use/
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	PS1.A: Structure and Properties of Matter
Concepts and Practices	Each pure substance has characteristic physical and chemical properties (for any bulk quantity under given conditions) that can be
	used to identify it. (MS-PS1-3)
	PS1.B: Chemical Reactions
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are
	regrouped into different molecules, and these new substances have different properties from those of the reactants. (MS-PS1-3)
Elaboration	Have students complete additional activities from the following unit: A Study of the Earth's- Natural Resources
Extension Activity	http://www.mineralseducationcoalition.org/pdfs/study/studyoftheearth.pdf
	Assessment Task A
	Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of
	each publication and methods used, and describe how they are supported or not supported by evidence.
Evaluation	Students will synthesize the information learned in the lab. Use the following questions to guide the student's written response.
	Which materials are man-made and which are natural? Analyze the "content" and "care" information. Determine the characteristics
Assessment Tasks	of different clothing materials. Why can some be washed in hot water, others only in cold? Why can't some be put in a clothes dryer
	or ironed? What about bleach?
	What properties of • ber make it attractive for clothing use?

BOE APPROVAL: August 2016

Cliffside Park Public Schools

Analyze the "content" and "care" information. Determine the characteristics of different clothing materials. Why can some be
washed in hot water, others only in cold? Why can't some be put in a clothes dryer or ironed? What about bleach?
What effect, if any, does the availability of natural resources have on your life-style? Has the need for resources ever caused war?
What causes famine in some countries? Is it lack of food or politics?
Has the need for resources ever caused war?
What causes famine in some countries? Is it lack of food or politics?
Can a country maintain its independence and quality of life without a dependable supply of natural resources? If yes, for how long? If
no, what can that country do to continue its existence?
Is there anything that isn't made from a natural resource? Have groups of students challenge one another to research something that
doesn't come from natural resources.

PHYSICAL SCIENCE		
MS. Matter and Its Interactions		
MS-PS1-4. Develop a model that	predicts and describes changes in particle motion, temperature, and state of a pure substar	nce when thermal energy is
added or removed.		
Clarification Statement: Emphasi	is is on qualitative molecular-level models of solids, liquids, and gases to show that adding or r	emoving thermal energy
increases or decreases kinetic en	ergy of the particles until a change of state occurs. Examples of models could include drawing	and diagrams. Examples of
particles could include molecules	or inert atoms. Examples of pure substances could include water, carbon dioxide, and helium	
Assessment Boundary: N/A		
Evidence Statements: MS-PS1-4		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	PS1.A: Structure and Properties of Matter	Cause and Effect
Modeling in 6–8 builds on K–5	Gases and liquids are made of molecules or inert atoms that are moving about relative to	Cause and effect relationships
and progresses to developing,	each other.	may be used to predict
using and revising models to	In a liquid, the molecules are constantly in contact with others; in a gas, they are widely	<u>phenomena in natural or</u>
describe, test, and predict more	spaced except when they happen to collide. In a solid, atoms are closely spaced and may	designed systems.
abstract phenomena and design	vibrate in position but do not change relative locations.	
systems.	The changes of state that occur with variations in temperature or pressure can be described	
Develop a model to predict	and predicted using these models of matter.	
and/or describe phenomena.	PS3.A: Definitions of Energy	

BOE APPROVAL: August A	2010		
	The term "heat" as used in everyday language refers both to thermal energy (the motion of		
	atoms or molecules within a substance) and the transfer of that thermal energy from one		
	object to another. In science, heat is used only for this second meaning; it refers to the		
	energy transferred due to the temperature difference between two objects. (secondary)		
	The temperature of a system is proportional to the average internal kinetic energy and		
	potential energy per atom or molecule (whichever is the appropriate building block for the		
	system's material). The details of that relationship depend on the type of atom or molecule		
	and the interactions among the atoms in the material. Temperature is not a direct measure		
	of a system's total thermal energy. The total thermal energy (sometimes called the total		
	internal energy) of a system depends jointly on the temperature, the total number of atoms		
	in the system, and the state of the material. (secondary)		
Connections to other DC	s in this grade-band: MS.ESS2.C		
Articulation of DCIs acros	ss grade-bands: HS.PS1.A ; HS.PS1.B ; HS.PS3.A		
NJSLS- ELA: RST.6-8.7			
NJSLS- Math: 6.NS.C.5			
	5E Model		
MS-PS1-4. Develop a mo	del that predicts and describes changes in particle motion, temperature, and state of a pure substan	<u>ce when thermal energy is</u>	
added or removed.			
F	Introduction Video: States of Matter		
Engage	http://betterlesson.com/lesson/639789/states-of-matter?from=search_lesson_title_		
Anticipatory Set	https://www.youtube.com/watch?v=HAPc6JH85pM		
	Crack that Marble Lab		
Fundamentian	http://betterlesson.com/lesson/634011/crack-that-marble-properties-of-matter-labs		
Exploration			
Student Inquiry	Molecules in Motion (download the Lesson 1.2 PDF to access the lesson plan)		
	http://www.middleschoolchemistry.com/lessonplans/chapter1/lesson2		
	In these lessons:		
Evaluation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation Concepts and Practices	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering pu	ractices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		

	PS1.A: Structure and Properties of Matter
	Gases and liquids are made of molecules or inert atoms that are moving about relative to each other.
	In a liquid, the molecules are constantly in contact with others; in a gas, they are widely spaced except when they happen to collide.
	In a solid, atoms are closely spaced and may vibrate in position but do not change relative locations.
	The changes of state that occur with variations in temperature or pressure can be described and predicted using these models of
	matter.
	PS3.A: Definitions of Energy
	The term "heat" as used in everyday language refers both to thermal energy (the motion of atoms or molecules within a substance)
	and the transfer of that thermal energy from one object to another. In science, heat is used only for this second meaning; it refers to
	the energy transferred due to the temperature difference between two objects. (secondary)
	The temperature of a system is proportional to the average internal kinetic energy and potential energy per atom or molecule
	(whichever is the appropriate building block for the system's material). The details of that relationship depend on the type of atom or
	molecule and the interactions among the atoms in the material. Temperature is not a direct measure of a system's total thermal
	energy. The total thermal energy (sometimes called the total internal energy) of a system depends jointly on the temperature, the
	total number of atoms in the system, and the state of the material. (secondary)
	Determine the melting and freezing points of a substance. Analyze a phase change curve.
	Students will observe what happens as matter undergoes a phase change. Start with cetyl alcohol in the solid phase well below its
Elaboration	melting point. Make observations as heat is added. Keep recording the temperature until the substance is totally melted. Reverse the
Extension Activity	process and let the same sample cool. (it will cool just sitting out at room temperature with the heat removed.)
	Explain the relationship between temperature and the energy associated with the motion of atoms. Write a hypothesis of what a
	graph of the temperature changes will look like. Students will graph the results of the temperature changes. A representative from
	each group will describe each part of the graph using their own words.
	Assessment Task A: Draw a Model Activity Sheet
Evaluation	Develop a model to predict and/or describe phenomena.
Assessment Tasks	Students will follow the steps outlined on the Student Activity Sheet. Students should be assessed based upon accuracy of model
	drawn and analysis of activity using a written response to the guiding questions.

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

Essential Question How do substances combine or change (react) to make new substances? Student Learning Objectives (Performance Expectations)
Content Area: Physical Science Pacing: 25 Instructional Days Essential Question How do substances combine or change (react) to make new substances? Student Learning Objectives (Performance Expectations)
Pacing: 25 Instructional Days Essential Question How do substances combine or change (react) to make new substances? Student Learning Objectives (Performance Expectations)
How do substances combine or change (react) to make new substances? Student Learning Objectives (Performance Expectations)
How do substances combine or change (react) to make new substances? Student Learning Objectives (Performance Expectations)
Student Learning Objectives (Performance Expectations)
MS-PS1-5. Develop and use a model to describe how the total number of atoms does not change in a chemical reaction and thus mass is conserved.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be
achieved.
MS-PS1-6. Undertake a design project to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be
achieved.
Unit Summary
Students provide molecular-level accounts of states of matters and changes between states, of how chemical reactions involve regrouping of atoms to form
new substances, and of how atoms rearrange during chemical reactions. Students also apply their understanding of optimization design and process in
engineering to chemical reaction systems. The crosscutting concept of energy and matter provides a framework for understanding the disciplinary core ideas.
Students are expected to demonstrate proficiency in developing and using models, analyzing and interpreting data, designing solutions, and obtaining,
evaluating, and communicating information. Students are also expected to use these science and engineering practices to demonstrate understanding of the
disciplinary core ideas.
Technical Terms
Thermal energy, kinetic molecular theory, conduction, convection, radiation, thermal equilibrium, kelvin, specific heat, calorimeter, thermodynamics, melting
point, boiling point, Law of Conservation of Matter, reactants, products, coefficients, subscripts, chemical equations
Formative Assessment Measures
Part A: What happens to the atoms when I bake a cake?
Students who understand the concepts are able to:

BOE APPROVAL: August 2016

Use physical models or drawings, including digital forms, to represent atoms in a chemical process.

Use mathematical descriptions to show that the number of atoms before and after a chemical process is the same.

Part B: How can a device be designed, constructed, tested, and modified that either releases or absorbs thermal energy by chemical processes?

Students who understand the concepts are able to:

Undertake a design project, engaging in the design cycle, to construct, test, and modify a device that either releases or absorbs thermal energy by chemical processes.

Specific criteria are limited to amount, time, and temperature of a substance.

Analyze and interpret data for the amount, time, and temperature of a substance in testing a device that either releases or absorbs thermal energy by chemical processes to determine similarities and differences in findings.

Develop a model to generate data for testing a device that either releases or absorbs thermal energy by chemical processes, including those representing inputs and outputs of thermal energy.

Track the transfer of thermal energy as energy flows through a designed system that either releases or absorbs thermal energy by chemical processes.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively. (MS-PS1-5) (MS-ETS1-3) MP.2	
technical texts. (MS-ETS1-3) RST.6-8.1	Model with mathematics. (MS-PS1-5) MP.4	
Follow precisely a multistep procedure when carrying out	Solve multi-step real-life and mathematical problems posed with positive and negative	
experiments, taking measurements, or performing technical tasks.	rational numbers in any form (whole numbers, fractions, and decimals), using tools	
(MS-PS1-6) RST.6-8.3	strategically. Apply properties of operations to calculate with numbers in any form;	
Integrate quantitative or technical information expressed in words in	convert between forms as appropriate; and assess the reasonableness of answers using	
a text with a version of that information expressed visually (e.g., in a	mental computation and estimation strategies. (MS-ETS1-3) 7.EE.3	
flowchart, diagram, model, graph, or table). (MS-PS1-5) RST.6-8.7		
Compare and contrast the information gained from experiments,		
simulations, video, or multimedia sources with that gained from		
reading a text on the same topic. (MS-ETS1-3) RST.6-8.9		
Conduct short research projects to answer a question (including a		
self-generated question), drawing on several sources and generating		
additional related, focused questions that allow for multiple avenues		
of exploration. (MS-PS1-6) (MS-ETS1-3) WHST.6-8.7		
Use ratio and rate reasoning to solve real-world and mathematical		
problems. (MS-PS1-5) 6.RP.A.3		
Core Instructional Materials Can include: Textbooks Series, Lab M	aterials, etc.	

GRADE: 7

21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12			
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.A.4, 8.2.8.A.5,			
	8.2.8.B.1			
Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual	Multimedia	Graphic organizers	Tiered activities	
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks	
Annotation guides	Answer masking		Self-directed activities	
Think-pair- share	Answer eliminator			
Visual aides	Highlighter			
Modeling	Color contrast			
Cognates				

		PHYSICAL SCIENCE	
MS. Matter and Its In	teractions		
		total number of atoms does not change in a chemical r	eaction and thus mass is conserved.
Clarification Stateme	nt: Emphasis is on law of conservation	on of matter and on physical models or drawings, includi	ng digital forms, that represent atoms.
Assessment Boundar	y: Assessment does not include the u	use of atomic masses, balancing symbolic equations, or i	ntermolecular forces.
Evidence Statements:	<u>MS-PS1-5</u>		
Science	& Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using	g Models	PS1.B: Chemical Reactions	Energy and Matter
Modeling in 6–8 build	ls on K–5 and progresses to	Substances react chemically in characteristic ways. In a	Matter is conserved because atoms are
developing, using and	revising models to describe, test,	chemical process, the atoms that make up the original	conserved in physical and chemical processes.
and predict more abs	tract phenomena and design	substances are regrouped into different molecules, and	
<u>systems.</u>		these new substances have different properties from	
Develop a model to d	escribe unobservable mechanisms.	those of the reactants.	
Connections to Natur	re of Science	The total number of each type of atom is conserved,	
Science Models, Laws	s, Mechanisms, and Theories	and thus the mass does not change.	
Explain Natural Phen	omena		
Laws are regularities or mathematical descriptions of			
natural phenomena.			
Connections to other	DCIs in this grade-band: MS.LS1.C ;	MS.LS2.B ; MS.ESS2.A	
Articulation of DCIs a	cross grade-bands: 5.PS1.B ; HS.PS1	.В	
NJSLS- ELA: RST.6-8.7	,		
NJSLS- Math: MP.2, N	ИР.4, 6.RP.A.3		
		5E Model	
MS-PS1-5. Develop a	nd use a model to describe how the	total number of atoms does not change in a chemical r	eaction and thus mass is conserved.
	What is a Chemical Reaction: Car	ndle Demonstration	
Engage	The teacher will use a small cand	le flame to demonstrate a chemical reaction between th	e candle wax and oxygen in the air.
Anticipatory Set	http://www.middleschoolchemis	stry.com/lessonplans/chapter6/lesson1	
	(Complete numbers 1-4)		
Exploration	Have students view the following	g video: The Law of Conservation of Mass	

Cliffside Park Public Schools

GRADE: 7

Student Inquiry	https://www.youtube.com/watch?v=2S6e11NBwiw
	What is a Chemical Reaction?
	http://www.middleschoolchemistry.com/lessonplans/chapter6/lesson1
	Students will see a molecular animation of the combustion of methane and oxygen as a model of a similar reaction. Students will use
	atom model cut-outs to model the reaction and see that all the atoms in the reactants show up in the products.
	Students will be able to explain that for a chemical reaction to take place, the bonds between atoms in the reactants are broken, the
	atoms rearrange, and new bonds between the atoms are formed to make the products. Students will also be able to explain that in a
	chemical reaction, no atoms are created or destroyed.
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS1.B: Chemical Reactions
	Substances react chemically in characteristic ways. In a chemical process, the atoms that make up the original substances are
	regrouped into different molecules, and these new substances have different properties from those of the reactants.
	The total number of each type of atom is conserved, and thus the mass does not change.
Elaboration	Have students create computer-generated models of both experiments using Google slides or another similar application in order to
	depict how the total number of atoms does not change in a chemical reaction. Labels should be written with details and include the
Extension Activity	following vocabulary terms: chemical and physical change, reactants, reaction, and law of conservation of mass.
Evaluation	Assessment Task A
Assessment Tasks	Develop a model to describe unobservable mechanisms.
ASSESSITIETIL TASKS	Students will create a model using atom model cut-outs. Teachers should assess the completion of the Student Activity Sheet.

	ENGINEERING DESIGN	
MS-ETS1-4 Engineering Design		
MS-ETS1-4. Develop a model to generate data for iter	ative testing and modification of a proposed object, tool,	or process such that an optimal design can be
achieved.		
Evidence Statements: MS-ETS1-4		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ETS1.B: Developing Possible Solutions	
Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on the	
progresses to developing, using, and revising models to	basis of the test results, in order to improve it.	
describe, test, and predict more abstract phenomena	Models of all kinds are important for testing solutions.	
and design systems.	ETS1.C: Optimizing the Design Solution The iterative	
Develop a model to generate data to test ideas about	process of testing the most promising solutions and	
designed systems, including those representing inputs	modifying what is proposed on the basis of the test	
and outputs.	results leads to greater refinement and ultimately to an	
	optimal solution.	
Connections to MS-ETS1.B: Developing Possible Soluti	ons Problems include: Physical Science: MS-PS1-6, MS-PS	3-3, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the Design Solu	ution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.ETS1.B ; 3	-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: SL.8.5		
NJSLS- Math: MP.2, 7.SP		

	PHYSICAL SCIENCE	
MS. Matter and Its Interactions		
MS-PS1-6. Undertake a design project to co	nstruct, test, and modify a device that either releases or absorbs thermal end	ergy by chemical processes.
Clarification Statement: Emphasis is on the	design, controlling the transfer of energy to the environment, and modificatior	n of a device using factors such as typ
and concentration of a substance. Examples	of designs could involve chemical reactions such as dissolving ammonium chlo	ride or calcium chloride.
Assessment Boundary: Assessment is limite	d to the criteria of amount, time, and temperature of substance in testing the $lpha$	device,
Evidence Statements: MS-PS1-6		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	PS1.B: Chemical Reactions	Energy and Matter
<u>Solutions</u>	Some chemical reactions release energy, others store energy.	The transfer of energy can be tracked
Constructing explanations and designing	ETS1.B: Developing Possible Solutions	as energy flows through a designed
solutions in 6–8 builds on K–5 experiences	A solution needs to be tested, and then modified on the basis of the test	or natural system.
and progresses to include constructing	results, in order to improve it. (secondary)	
explanations and designing solutions	ETS1.C: Optimizing the Design Solution	
supported by multiple sources of evidence	Although one design may not perform the best across all tests, identifying the	
consistent with scientific knowledge,	characteristics of the design that performed the best in each test can provide	
principles, and theories.	useful information for the redesign process - that is, some of the	
Undertake a design project, engaging in the	characteristics may be incorporated into the new design. (secondary)	
design cycle, to construct and/or implement	The iterative process of testing the most promising solutions and modifying	
a solution that meets specific design criteria	what is proposed on the basis of the test results leads to greater refinement	
and constraints.	and ultimately to an optimal solution. (secondary)	
Connections to other DCIs in this grade-ban	d: MS.PS3.D	•
Articulation of DCIs across grade-bands: HS	.PS1.A ; HS.PS1.B ; HS.PS3.A ; HS.PS3.B ; HS.PS3.D	
NJSLS- ELA: RST.6-8.3, WHST.6-8.7		
NJSLS- Math: N/A		
	5E Model	
MS-PS1-6. Undertake a design project to co	nstruct, test, and modify a device that either releases or absorbs thermal energy	ergy by chemical processes.
Engage Chemical Reaction	and Engineering Design	

Anticipatory Set	http://www.middleschoolchemistry.com/lessonplans/chapter6/lesson11
	Using the Student Activity Sheet, take students through the Design the Problem section of the activity.
	In the story, the eggs need to be moved while they are protected and kept at a specific temperature range. Students observe heat
	packs that use different chemical processes as possible heat sources for their device. As a class, students identify the features the
	device should have to be successful (criteria) as well as the factors that might limit or impede the development of a successful design
	(constraints).
	Chemical Reactions and Engineering Design
	http://www.middleschoolchemistry.com/lessonplans/chapter6/lesson11
Exploration	Students will design, test, modify, and optimize a device that uses a chemical reaction to reach a specific temperature range for a
Student Inquiry	portable reptile egg incubator.
	Note: Students will not be expected to build every element of the heat pack such as incorporating a pouch of water into the pack. Their
	main goal is to achieve the target temperature range and to design, on paper, the final device.
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS1.B: Chemical Reactions
	Some chemical reactions release energy, others store energy.
Explanation	ETS1.B: Developing Possible Solutions
Concepts and Practices	A solution needs to be tested, and then modified on the basis of the test results, in order to improve it. (secondary)
	ETS1.C: Optimizing the Design Solution
	Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in
	each test can provide useful information for the redesign process - that is, some of the characteristics may be incorporated into the
	new design. (secondary)
	The iterative process of testing the most promising solutions and modifying what is proposed on the basis of the test results leads to
	greater refinement and ultimately to an optimal solution. (secondary)
Elaboration	Related Activities
Extension Activity	Better Lessons: MS-PS1-6
-ALCHSION ACLIVILY	
·	

Cliffside Park Public Schools

BOE APPROVAL: August 2016		
Assessment Tasks	Students will complete the Reptile Egg Identification Chart.	
	After determining the target temperature range, students use water and different amounts of calcium chloride and baking soda to	
	achieve the right temperature and produce enough gas to support the egg and cushion against impact.	
	Assessment Task B	
	Undertake a design project, engaging in the design cycle, to construct and/or implement a solution that meets specific design criteria	
	and constraints.	
	Students will design, test, modify, and optimize a device that uses a chemical reaction to reach a specific temperature range for a	
	portable reptile egg incubator.	
	Note: Students will not be expected to build every element of the heat pack such as incorporating a pouch of water into the pack.	
	Their main goal is to achieve the target temperature range and to design, on paper, the final device.	

	ENGINEERING DESIGN	
MS-ETS1-2 Engineering Design		
MS-ETS1-2. Evaluate competing design solutions using a s	ystematic process to determine how well they meet the	criteria and constraints of the problem.
Evidence Statements: MS-ETS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions	
Engaging in argument from evidence in 6–8 builds on K–5	There are systematic processes for evaluating solutions	
experiences and progresses to constructing a convincing	with respect to how well they meet the criteria and	
argument that supports or refutes claims for either	constraints of a problem.	
explanations or solutions about the natural and designed		
world.		
Evaluate competing design solutions based on jointly		
developed and agreed-upon design criteria.		
Connections to MS-ETS1.B: Developing Possible Solutions	Problems include: Physical Science: MS-PS1-6, MS-PS3-3,	, Life Science: MS-LS2-5
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.E	TS1.B ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B	
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7 , WHST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

	ENGINEERING DESIGN	
MS-ETS1-3 Engineering Design		
MS-ETS1-3. Analyze data from tests to determine	e similarities and differences among several design solutions to id	entify the best characteristics of each that
can be combined into a new solution to better m	eet the criteria for success.	
Evidence Statements: MS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5 experiences	There are systematic processes for evaluating solutions with	
and progresses to extending quantitative analysis	respect to how well they meet the criteria and constraints of a	
to investigations, distinguishing between	problem.	
correlation and causation, and basic statistical	Sometimes parts of different solutions can be combined to create	
techniques of data and error analysis.	a solution that is better than any of its predecessors.	
Analyze and interpret data to determine	ETS1.C: Optimizing the Design Solution Although one design may	
similarities and differences in findings.	not perform the best across all tests, identifying the	
	characteristics of the design that performed the best in each test	
	can provide useful information for the redesign process—that is,	
	some of those characteristics may be incorporated into the new	
	design.	
Connections to MS-ETS1.B: Developing Possible S	Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3	, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the Design	n Solution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.ETS1	A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

Unit 4: Overview **Unit 4: Structure and Function** Grade: 7 Content Area: Life Science Pacing: 15 Instructional Days **Essential Question** How do cells contribute to the functioning of an organism? **Student Learning Objectives (Performance Expectations)** MS-LS1-1. Conduct an investigation to provide evidence that living things are made of cells; either one cell or many different numbers and types of cells. MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. Unit Summary Students demonstrate age appropriate abilities to plan and carry out investigations to develop evidence that living organisms are made of cells. Students gather information to support explanations of the relationship between structure and function in cells. They are able to communicate an understanding of cell theory and understand that all organisms are made of cells. Students understand that special structures are responsible for particular functions in organisms. They then are able to use their understanding of cell theory to develop and use physical and conceptual models of cells. The crosscutting concepts of scale, proportion, and quantity and structure and function provide a framework for understanding the disciplinary core ideas. Students are expected to demonstrate proficiency in planning and carrying out investigations, analyzing and interpreting data, and developing and using models, Students are also expected to use these to use these science and engineering practices to demonstrate understanding of the disciplinary core ideas. **Technical Terms** Cell theory, cell membrane, cytoplasm, cytoskeleton, centriole, chloroplast, eukaryotic, endoplasmic reticulum, prokaryotic, organelle, vacuole, lysosome, lipid bilayer, ribosome, Golgi apparatus, mitochondria, selectively permeable **Formative Assessment Measures** Part A: How will astrobiologists know if they have found life elsewhere in the solar system? Students who understand the concepts are able to: Conduct an investigation to produce data that provides evidence distinguishing between living and nonliving things. Conduct an investigation to produce data supporting the concept that living things may be made of one cell or many and varied cells. Distinguish between living and nonliving things. Observe different types of cells that can be found in the makeup of living things.

BOE APPROVAL: August 2016

Part B: How do the functions of cells support an entire organism?

Students who understand the concepts are able to:

Develop and use a model to describe the function of a cell as a whole.

Develop and use a model to describe how parts of cells contribute to the cell's function.

Develop and use models to describe the relationship between the structure and function of the cell wall and cell membrane.

	Inte	rdisciplinary Connections	
NJSLS- ELA		NJSLS- Mathematics	
Conduct short research projects to answer a question (including a		Use variables to represent two quantities in a real-world problem that change in	
self-generated question), drawing	g on several sources and generating	relationship to one another; write an equation to express one quantity, thought of as the	
additional related, focused quest	ions that allow for multiple avenues	dependent variable, in terms	of the other quantity, thought of as the independent
of exploration. (MS-LS1-1) WHST.	6-8.7	variable. Analyze the relation	ship between the dependent and independent variables
Integrate multimedia and visual d	lisplays into presentations to clarify	using graphs and tables, and	relate these to the equation. (MS-LS1-1),(MS-LS1-2) 6.EE.C.9
information, strengthen claims ar	nd evidence, and add interest. (MS-		
LS1-2) SL.8.5			
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.A.4, 8.2.8.A.5,		
	8.2.8.B.1 <i>,</i>		
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		

Cliffside Park Public Schools

GRADE: 7

SUBJECT: SCIENCE Grade 7

Cognates	Color contrast		
----------	----------------	--	--

		LIFE SCIENCE		
	ules to Organisms: Structur			
			either one cell or many different numbers and types of cells.	
			ls, distinguishing between living and nonliving things, and	
-		ne cell or many and varied cells.		
Assessment Boundary				
Evidence Statements:	MS-LS1-1			
Science & Eng	gineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Planning and Carrying	Out Investigations	LS1.A: Structure and Function	Scale, Proportion, and Quantity	
Planning and carrying	out investigations in 6-8	All living things are made up of cells, which	Phenomena that can be observed at one scale may not be	
builds on K-5 experien	ces and progresses to	is the smallest unit that can be said to be	observable at another scale.	
include investigations	that use multiple variables	alive. An organism may consist of one	Connections to Engineering, Technology and Applications of	
and provide evidence t	to support explanations or	single cell (unicellular) or many different	Science	
<u>solutions.</u>		numbers and types of cells (multicellular).	Interdependence of Science, Engineering, and Technology	
Conduct an investigation	<u>on to produce data to serve</u>		Engineering advances have led to important discoveries in	
as the basis for eviden	<u>ce that meet the goals of an</u>		virtually every field of science, and scientific discoveries have led	
investigation.			to the development of entire industries and engineered systems.	
Connections to other	DCIs in this grade-band: N/A	A		
Articulation of DCIs ac	ross grade-bands: HS.LS1.A			
NJSLS- ELA: WHST.6-8	.7			
NJSLS- Math: 6.EE.C.9				
		5E Model		
MS-LS1-1. Conduct an	investigation to provide ev	idence that living things are made of cells;	either one cell or many different numbers and types of cells.	
	Is It Alive PowerPoint			
	http://www.curriki.org/	wiki/bin/view/Coll_kfasimpaur/Isitalive		
Engage	Introduction to Cells Vid	Introduction to Cells Video		
Anticipatory Set	https://vimeo.com/3710	https://vimeo.com/37107992		
	Interactive Cell Model			

Cliffside Park Public Schools

GRADE: 7

	http://www.cellsalive.com/		
	http://www.censanve.com/		
	Cheek Cell Lab		
	https://docs.google.com/document/d/16ZM9fNEwHrl2wjFBAZj74zC9av0fZTvWr2nDT4mjKzg/edit		
	In this activity, students will:		
	Collect, observe, and describe your own cheek cells		
Exploration	Use science equipment and supplies according to instructions		
Student Inquiry	Compare stained and unstained cheek cells		
· · · · · · · · · · · · · · · · · · ·	Summarize findings based on observations		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	LS1.A: Structure and Function		
	All living things are made up of cells, which is the smallest unit that can be said to be alive. An organism may consist of one single cell		
	(unicellular) or many different numbers and types of cells (multicellular).		
Elaboration	Related Activities		
Extension Activity	Better Lessons: LS1-1		
	Assessment Task A: Cheek Cell Lab- Post Reflection Questions		
	Conduct an investigation to produce data to serve as the basis for evidence that meet the goals of an investigation.		
	1. How are the three specimens (2 stained and one unstained) alike?		
Evaluation	2. How are the three specimens different?		
Assessment Tasks	3. What benefit would there be for looking at cells without stain?		
	4. Was it easier to see the cell structures when they were clumped together or isolated by themselves? Why would that be?		
	5: What cell structures were you able to view under the microscope? Why were they visible?		
	6. What cell structures were you NOT able to view?		

GRADE: 7

7. What shape are cheek cells? Is this easy to figure out? Why or why not?8. List two real-life situations in which looking at cells under a microscope benefits mankind.

LIFE SCIENCE MS-LS1-2 From Molecules to Organisms: Structures and Processes MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. Clarification Statement: Emphasis is on the cell functioning as a whole system and the primary role of identified parts of the cell, specifically the nucleus, chloroplasts, mitochondria, cell membrane, and cell wall. Assessment Boundary: Assessment of organelle structure/function relationships is limited to the cell wall and cell membrane. Assessment of the function of the other organelles is limited to their relationship to the whole cell. Assessment does not include the biochemical function of cells or cell parts. Evidence Statements: MS-LS1-2 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts Developing and Using Models** LS1.A: Structure and Function Structure and Function Modeling in 6–8 builds on K–5 experiences and Within cells, special structures are responsible for Complex and microscopic structures and progresses to developing, using, and revising models to particular functions, and the cell membrane forms the systems can be visualized, modeled, and used describe, test, and predict more abstract phenomena and boundary that controls what enters and leaves the cell. to describe how their function depends on the design systems. relationships among its parts, therefore Develop and use a model to describe phenomena. complex natural structures/systems can be analyzed to determine how they function. Connections to other DCIs in this grade-band: MS.LS3.A Articulation of DCIs across grade-bands: 4.LS1.A ; HS.LS1.A NJSLS- ELA: SL.8.5 NJSLS- Math: 6.EE.C.9 5E Model MS-LS1-2. Develop and use a model to describe the function of a cell as a whole and ways parts of cells contribute to the function. Parts and Functions of a Cell: http://www.pbslearningmedia.org/asset/tdc02 vid nucleus/ Engage Anticipatory Set Parts of a Cell: http://freevideolectures.com/Course/2548/Biology/34 Exploration Lesson 1: Make a Cell Model

Cliffside Park Public Schools

GRADE: 7

Student Inquiry	http://sciencenetlinks.com/lessons/cells-1-make-a-model-cell/		
	Lesson 2: The Cell as a System		
	http://sciencenetlinks.com/lessons/cells-2-the-cell-as-a-system/		
Explanation Concepts & Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): LS1.A: Structure and Function Within cells, special structures are responsible for particular functions, and the cell membrane forms the boundary that controls what enters and leaves the cell.		
Elaboration Extension Activity	Students will compare a cell to a particular system of their choice. Students can choose to compare a cell to a school, sports team, a bicycle or home. They can create a blueprint poster or a 3D model. The model or blueprint will have to showcase their analogy and each of the parts and their functions. The title of your poster will be "A Cell Is Like a" The poster will actually show your system – NOT the cell. All the parts you include in your poster will be described as part of the system. Student will then explain their cell comparison.		
Evaluation Assessment Tasks	Assessment Task A: Make a Cell Model Develop and use a model to describe phenomena. Description: Students should understand the basic functions of the cell structures highlighted in this lesson, as well as have a better understanding of the usefulness and limitations of models. Assess students on their answers to the student sheet as well on their participation in class discussions. Assessment Task B: The Cell as a System- Reflection Questions Students should be able to clearly state why the factory, and more importantly the cell, can be thought of as systems. They should also be able to explain how the individual parts of the cell system operate within the larger context of the cell, and that the processes necessary for life take place within each cell. Ask the following questions to assess this understanding, telling students to think about the cell as a system: 1. When this system is working, what does it do? (It produces proteins.) 2. For this system to work, must it receive any input? (Yes; for example, energy ultimately from the sun.) 3. What, if any, output does this system. Describe what each part does, and tell how each part contributes to the system as a whole.		

BOE APPROVAL: August 2016 Can any one part of the system do what the whole system does? Justify your response. (Answers will vary. Students should realize that the organelles need to work together to produce proteins.) 5. Identify at least two parts of this system that must interact if the system is to function. Describe how these parts interact. 6. Can you identify any subsystems within the whole system? (Answers will vary, but students should be able to describe at least one subsystem.) 7. Describe how the functioning of this system would change if one of the parts wears out. 8. In what ways is it useful to think of the cell as a system? (In general, thinking about a cell as a system helps in understanding individual cell organelle functions, and how they operate within the larger context of the cell.)

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

GRADE: 7

Unit 5: Overview
Unit 5: Body Systems
Grade: 7
Content Area: Life Science
Pacing: 15 Instructional Days
Essential Question
What are humans made of?
Student Learning Objectives (Performance Expectations)
MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.
MS-LS1-8. Gather and synthesize information that sensory receptors respond to stimuli by sending messages to the brain for immediate behavior or storage as
memories.
Unit Summary
Students develop a basic understanding of the role of cells in body systems and how those systems work to support the life functions of the organism. Students will construct explanations for the interactions of systems in cells and organisms. Students understand that special structures are responsible for particular functions in organisms, and that for many organisms, the body is a system of multiple-interacting subsystems that form a hierarchy, from cells to the body. Students construct explanations for the interactions of systems in cells and organisms and for how organisms gather and use information from the environment. The cross cutting concepts of systems and system models and cause and effect provide a framework for understanding the disciplinary core ideas. Students are expected to demonstrate proficiency in engaging in argument from evidence and obtaining, evaluating, and communicating information. Students use these science and engineering practices to demonstrate understanding of the disciplinary core ideas. Technical Terms Nervous system, stimuli, neurons, cell body, dendrites, axon, synapse, cerebrum, cerebellum, skeletal system, ligaments, marrow, muscular system, voluntary muscles, tendons, circulatory system, plasma, arteries, capillaries, atrium, ventricle, aorta, respiratory system, epiglottis, trachea, alveoli,
digestive system, salivary glands, peristaltic, small intestines, pancreas, villi, large intestines
Formative Assessment Measures
Part A: What is the evidence that a body is actually a system of interacting subsystems composed of groups of interacting cells?
Students who understand the concepts are able to:
Use an oral and written argument supported by evidence to support or refute an explanation or a model of how the body is a system of interacting subsystems composed of groups of cells.

GRADE: 7

Part B: How do organisms receiv	Part B: How do organisms receive and respond to information from their environment?			
Students who understand the concepts are able to:				
Gather, read, and synthesize information from multiple appropriate sources about sensory receptors' response to stimuli.				
Assess the credibility, accuracy,	and possible bias of each publication a	and methods used.		
Describe how publications and r	nethods used are supported or not sup	oported by evidence.		
	Inter	disciplinary Connections		
NJ	SLS- ELA	NJS	LS- Mathematics	
Cite specific textual evidence to	support analysis of science and		N/A	
technical texts. (MS-LS1-3) RST.6	5-8.1			
Trace and evaluate the argumer	nt and specific claims in a text,			
distinguishing claims that are su	pported by reasons and evidence			
from claims that are not.(MS-LS	1-3) RI.6.8			
Write arguments focused on dis	cipline content. (MS-LS1-3) WHST.6-			
8.1				
Gather relevant information from	m multiple print and digital sources,			
using search terms effectively; a	ssess the credibility and accuracy of			
each source; and quote or paraphrase the data and conclusions of				
others while avoiding plagiarism and following a standard format for				
citation.(MS-LS1-8) WHST.6-8.8				
Core Instructional Materials	Can include: Textbooks Series, Lab Ma	aterials, etc.		
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8	,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A	.4, 8.1.8.A.5, 8.1.8.D.2, 8.1.8.D.3, 8.1.8.	D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1	
		Modifications		
English Language Learners	English Language Learners Special Education At-Risk Gifted and Talented			
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual	Multimedia	Graphic organizers	Tiered activities	
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	
			•	

Cliffside Park Public Schools

GRADE: 7

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks
Annotation guides	Answer masking		Self-directed activities
Think-pair- share	Answer eliminator		
Visual aides	Highlighter		
Modeling	Color contrast		
Cognates			

LIFE SCIENCE

MS-LS1-3 From Molecules to Organisms: Structures and Processes

MS-LS1-3. Use argument supported by evidence for how the body is a system of interacting subsystems composed of groups of cells.

Clarification Statement: Emphasis is on the conceptual understanding that cells form tissues and tissues form organs specialized for particular body functions. Examples could include the interaction of subsystems within a system and the normal functioning of those systems.

Assessment Boundary: Assessment does not include the mechanism of one body system independent of others. Assessment is limited to the circulatory, excretory, digestive, respiratory, muscular, and nervous systems.

Evidence Statements: MS-LS1-3

Science 8	& Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Engaging in Argumer	nt from Evidence	LS1.A: Structure and Function	Systems and System Models	
Engaging in argumen	t from evidence in 6–8 builds on	In multicellular organisms, the body is a system of	Systems may interact with other systems; they may	
K–5 experiences and	progresses to constructing a	multiple interacting subsystems. These subsystems	have sub-systems and be a part of larger complex	
convincing argument	that supports or refutes claims	are groups of cells that work together to form	systems.	
for either explanatio	ns or solutions about the natural	tissues and organs that are specialized for	Connections to Nature of Science	
and designed world(s	<u>s).</u>	particular body functions.	Science is a Human Endeavor	
Use an oral and writt	en argument supported by		Scientists and engineers are guided by habits of	
evidence to support	or refute an explanation or a		mind such as intellectual honesty, tolerance of	
model for a phenome	enon.		ambiguity, skepticism, and openness to new ideas.	
Connections to other DCIs in this grade-band: N/A				
Articulation of DCIs a	across grade-bands: HS.LS1.A			
NJSLS- ELA: RST.6-8.2	1, RI.6.8, WHST.6-8.1			
NJSLS- Math: 6.EE.C.	9			
		5E Model		
MS-LS1-3. Use argun	nent supported by evidence for ho	ow the body is a system of interacting subsystems c	omposed of groups of cells.	
Engage				
pludents will complete a Pin the organ on the body game. Hand students an organ of the body. Ask students to identify				
Anticipatory Set	ask students to put organ in its place on the human body. This can be done via SmartBoard, a physical mode		rtBoard, a physical model, or paper cut-outs. Ask	

Cliffside Park Public Schools

GRADE: 7

	students: What are these organs? Where do they go in the body?
	http://sciencenetlinks.com/interactives/systems.html.
	Students will help Arnold find his organs. They will be able to identify the name of organs in different body systems and place them in
	the body.
	Levels of Organization
	http://utahscience.oremjr.alpine.k12.ut.us/sciber00/7th/cells/sciber/levelorg.htm
	Start by putting levels of organization on the board (Levels 1-5). Pictures can accompany the words.
	Put students into groups.
	Research:
Exploration	Put students into groups and assign each group a body system to research. Systems can include: Digestive System, Respiratory System, Skeletal System, Nervous System, Cardiovascular System, Circulatory System, Reproductive System and Muscular system. Students will
Student Inquiry	indicate the role the body system, which organs are within the body system, and how the system interacts with other body systems.
······································	Students can use the following website to gather information: http://www.getbodysmart.com/ap/systems/tutorial.html
	Presentation:
	Students will conduct a presentation on their body system. Students will create a PowerPoint that presents key information about their
	system including a list of organs in the system and the functions of these organs. Students should use an oral and written argument that
	is supported by evidence to explain their system. After all presentations, teacher should lead a class discussion focusing on how all body
	systems work in conjunction with one another.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts & Practices	LS1.A: Structure and Function
	In multicellular organisms, the body is a system of multiple interacting subsystems. These subsystems are groups of cells that work
	together to form tissues and organs that are specialized for particular body functions.
Elaboration	Have students research a disease which affects the body system they presented on. Students can research various aspects of the diseas
Extension Activity	including the causes and its impact on the system.
Evaluation	Assessment Task A: Research Presentation
Lvaluation	

GRADE: 7

model for a phenomenon or a solution to a problem.
Evaluation Criteria- Presentation should include:
Key terms
Information on major organs within the system
Arguments that are supported by evidence
Information on how body systems interact with one another

GRADE: 7

MS IS1 8 From Moloc	ules to Organisms: Structures and Proce	LIFE SCIENCE			
		eptors respond to stimuli by sending messages to	the brain for immediate behavior or storage		
as memories.					
Clarification Statemen	nt: N/A				
Assessment Boundary	Assessment does not include mechanis	ms for the transmission of this information.			
Evidence Statements:	MS-LS1-8				
Scienc	e & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Obtaining, Evaluating,	and Communicating Information	LS1.D: Information Processing	Cause and Effect		
Obtaining, evaluating,	and communicating information in 6-8	Each sense receptor responds to different inputs	Cause and effect relationships may be used to		
builds on K-5 experien	ces and progresses to evaluating the	(electromagnetic, mechanical, chemical),	predict phenomena in natural systems.		
merit and validity of id	leas and methods.	transmitting them as signals that travel along			
Gather, read, and synt	hesize information from multiple	nerve cells to the brain. The signals are then			
appropriate sources ar	nd assess the credibility, accuracy, and	processed in the brain, resulting in immediate			
possible bias of each p	ublication and methods used, and	behaviors or memories.			
describe how they are	supported or not supported by evidence	<u>-</u>			
Connections to other	DCIs in this grade-band: N/A				
Articulation of DCIs ac	cross grade-bands: 4.LS1.D ; HS.LS1.A				
NJSLS- ELA: WHST.6-8	.8				
NJSLS- Math: N/A					
		5E Model			
MS-LS1-8. Gather and	synthesize information that sensory rec	eptors respond to stimuli by sending messages to	the brain for immediate behavior or storage		
as memories.					
	Begin class with leading students th	nrough an online interactive Stroop Test: https://fa	culty.washington.edu/chudler/java/ready.html		
F 12222	The test will show words written in	The test will show words written in various colors. Students will have to read words of colors and also try to read the color of the			
Engage	words. Any type of Stroop test can	words. Any type of Stroop test can be conducted.			
Anticipatory Set	http://brainu.org/do-stroop	http://brainu.org/do-stroop			
	http://www.brainfacts.org/Sensing	http://www.brainfacts.org/Sensing-Thinking-Behaving/Senses-and-Perception/Articles/2013/A-Mind-About-Touch			
Exploration	Reaction Time Lab				

GRADE: 7

Student Inquiry	In this experiment students will test each other's reaction times. Lab activities will assess visual, auditory and tactile stimuli.
	http://wiki.backyardbrains.com/Reaction_Time
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
concepts and Fractices	LS1.D: Information Processing
	Each sense receptor responds to different inputs (electromagnetic, mechanical, chemical), transmitting them as signals that travel
	along nerve cells to the brain. The signals are then processed in the brain, resulting in immediate behaviors or memories.
Elaboration	Sensory Flowchart
Extension Activity	Students will be able to connect how nerve receptors and senses can send messages to the brain. Students will be able to
	summarize the connection, create a flow chart that connects the concepts.
	Assessment A: Lab Reflection
	Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of
	each publication and methods used, and describe how they are supported or not supported by evidence.
	Students will synthesize the information learned in the lab to respond to the following questions and tasks.
	Why do you think touch and audio stimuli have a faster reaction time on average?
	Do your results match the averages mentioned above?
Evaluation	Would you expect a difference in the average reaction times between a male and female? What about a more athletic person
Assessment Tasks	compared to a more sedentary person?
	Do you think it's OK to average two people like we did? What might be the problem?
	Why did we not test the "tactile" reaction time in the choice task? How could you redesign the experimental setup to test tactile
	reaction times in the choice task?
	As you know, you have a dominant vs. a non-dominant hand. With only four trials, it is too hard to see a difference. Perhaps you
	should repeat the experiment 10-20 times to see if there is any difference between dominant and nondominant hands.
	The average conduction velocity speed is approximately 20-80 m/s. It takes approximately 1 ms for a neurotransmitter to cross the
	synapses. Calculate the lower limit for your patella reflex vs. the patellar reflex of a giraffe.

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

GRADE: 7

Unit 6: Overview

Unit 6: Inheritance and Variation of Traits

Grade: 7

Content Area: Life Science

Pacing: 20 Instructional Days

Essential Question

Why do kids look similar to their parents?

Student Learning Objectives (Performance Expectations)

MS-LS3-1. Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

MS-LS3-2. Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information and sexual reproduction results in offspring with genetic variation.

Unit Summary

Students develop and use models to describe how gene mutations and sexual reproduction contribute to genetic variation. Students understand how genetic factors determine the growth of an individual organism. They also demonstrate understanding of the genetic implications of sexual and asexual reproduction. The crosscutting concepts of cause and effect and structure and function provide a framework for understanding how gene structure determines differences in the functioning of organisms. Students are expected to demonstrate proficiency in developing and using models. Students use these science and engineering practices to demonstrate understance to demonstrate proficiency in developing and using models.

Technical Terms

Allele, crossing over, diploid, dominant, egg, fertilization, gamete, genetic recombination, genotype, haploid, heredity, heterozygous, homozygous, hybrid, Law of Independent Assortment, Law of Segregation, meiosis, nondisjunction, phenotype, pollination, recessive, reproduction, zygote

Formative Assessment Measures

Part A: How do structural changes to genes (mutations) located on chromosomes affect proteins or affect the structure and function of an organism?

Students who understand the concepts are able to:

Develop and use a model to describe why structural changes to genes (mutations) located on chromosomes may affect proteins and may result in harmful, beneficial, or neutral effects to the structure and function of the organism.

Part B: How do asexual reproduction and sexual reproduction affect the genetic variation of offspring?

Students who understand the concepts are able to:

GRADE: 7

BOE APPROVAL: August 2016

Develop and use a model to describe why asexual reproduction results in offspring with identical genetic information.

Develop and use a model to describe why sexual reproduction results in offspring with genetic variation.

Use models such as Punnett squares, diagrams, and simulations to describe the cause-and effect-relationship of gene transmission from parent(s) to offspring and resulting genetic variation.

Interdisciplinary Connections				
NJSLS- ELA			NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and		Model with mathematics. (MS-L	S3-2) MP.4	
technical texts. (MS-LS3-1),(MS-LS	3-2) RST.6-8.1	Summarize numerical data sets	in relation to their context. (MS-LS3-2) 6.SP.B.5	
Determine the meaning of symbol	ls, key terms, and other domain-			
specific words and phrases as they	y are used in a specific scientific or			
technical context relevant to grad	es 6-8 texts and topics. (MS-LS3-			
1),(MS-LS3-2) RST.6-8.4				
• •	l information expressed in words in			
	nation expressed visually (e.g., in a			
flowchart, diagram, model, graph,	or table). (MS-LS3-1),(MS-LS3-2)			
RST.6-8.7				
Integrate multimedia and visual displays into presentations to clarify				
	d evidence, and add interest. (MS-			
LS3-1),(MS-LS3-2) SL.8.5	r			
Core Instructional Materials	Can include: Textbooks Series, Lab I			
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRI			
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8	.A.4, 8.1.8.A.5, 8.1.8.D.1,8.1.8.D.1	2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1	
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities	
Think alouds	Leveled readers	Extended time	Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	

Cliffside Park Public Schools

GRADE: 7

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

GRADE: 7

		LIFE SCIENCE			
MS-LS3-1 Heredity: Inhe			as may offect exctains and may result in		
		lel to describe why structural changes to genes (mutations) located on chromosome ects to the structure and function of the organism.	es may affect proteins and may result in		
		is on conceptual understanding that changes in genetic material may result in making	a different proteins		
	-	it does not include specific changes at the molecular level, mechanisms for protein sy			
Evidence Statements: M		it does not include specific changes at the molecular level, mechanisms for protein sy	intresis, or specific types of initiations.		
Science & Engineering		Disciplinary Core Ideas	Cross-Cutting Concepts		
Developing and Using N		LS3.A: Inheritance of Traits	Structure and Function		
Modeling in 6–8 builds o		Genes are located in the chromosomes of cells, with each chromosome pair	Complex and microscopic structures and		
experiences and progres		containing two variants of each of many distinct genes. Each distinct gene chiefly	systems can be visualized, modeled, and		
developing, using, and re		controls the production of specific proteins, which in turn affects the traits of the	used to describe how their function		
models to describe, test,		individual. Changes (mutations) to genes can result in changes to proteins, which	depends on the shapes, composition,		
		can affect the structures and functions of the organism and thereby change traits.	and relationships among its parts,		
and design systems.		LS3.B: Variation of Traits	therefore complex natural		
Develop and use a mode	l to	In addition to variations that arise from sexual reproduction, genetic information	structures/systems can be analyzed to		
describe phenomena.		can be altered because of mutations. Though rare, mutations may result in changes	determine how they function.		
		to the structure and function of proteins. Some changes are beneficial, others			
		harmful, and some neutral to the organism.			
Connections to other DC	Is in this a	grade-band: MS.LS1.A ; MS.LS4.A			
Articulation of DCIs acro	ss grade-l	bands: 3.LS3.A ; 3.LS3.B ; HS.LS1.A ; HS.LS1.B ; HS.LS3.A ; HS.LS3.B			
NJSLS- ELA: RST.6-8.1, R	ST.6-8.4, F	RST.6-8.7, SL.8.5			
NJSLS- Math: N/A					
		5E Model			
MS-LS3-1. Develop and	use a mod	el to describe why structural changes to genes (mutations) located on chromosom	es may affect proteins and may result ir		
		ects to the structure and function of the organism.			
	Video ar	nd Discussion			
Engage	Watch a	Watch an embryo develop in this animation and study how mutations affect the expression of genes.			
Anticipatory Set	http://www.ck12.org/life-science/Mutations-in-Life-Science/web/Regulating-Genes/				

	https://www.brainpop.com/health/geneticsgrowthanddevelopment/geneticmutations/preview.weml
Fundamentian	Video: Introduction to Chromosomes
Exploration	http://www.ck12.org/biology/Chromosomes/lecture/Chromosomes/?referrer=featured_content
Student Inquiry	DNA Replication: Paper Clip Activity
	http://gpschools.schoolwires.net/cms/lib05/MI01000971/Centricity/Domain/2027/dnareplicationpaperclipactivity.pdf
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	LS3.A: Inheritance of Traits
Explanation	Genes are located in the chromosomes of cells, with each chromosome pair containing two variants of each of many distinct genes.
Concepts and Practices	Each distinct gene chiefly controls the production of specific proteins, which in turn affects the traits of the individual. Changes
	(mutations) to genes can result in changes to proteins, which can affect the structures and functions of the organism and thereby
	change traits.
	LS3.B: Variation of Traits
	In addition to variations that arise from sexual reproduction, genetic information can be altered because of mutations. Though rare,
	mutations may result in changes to the structure and function of proteins. Some changes are beneficial, others harmful, and some
	neutral to the organism.
	Genetic Disorder Project:
	Problem: You are a researcher and you are ready to present information on a genetic disorder you have discovered. You want to get
	more funding in order to continue your research. Your job is to creatively present all of your findings to the Board of Directors. Your
	presentation needs to be in words in which all members of the Board of Directors can understand. (In other words – break down all
	the medical language into everyday speech, whenever possible) The following website can be used as your main source of
Elaboration	information: www.ghr.nlm.nih.gov.
Extension Activity	Choice of two different projects:
	1. Create and present a PowerPoint presentation of the genetic disorder.
	2. Create a tissue box display that explains the genetic disorder
	Both projects must include the following criteria:
	- Facts or theories about the disorder
	- Symptoms of the disorder
	- Inheritance (which chromosome/gene is affected? How do you get it and can it be passed on to further generations?

GRADE: 7

	 Incidence (how often it occurs in male/female, ethnicity, age, etc) Treatment of the disorder (therapy, medicines, future prospects)
Evaluation Assessment Tasks	Assessment Task A: Paper-Clip Activity: Response Questions Students will respond to questions following Steps 6 & 7 in the Biology DNA Replication: Paper Clip Activity. Assessment Task B: Genetic Disorder Project Projects must meet established criteria.

GRADE: 7

	LIFE SCIENCE	
MS-LS3-2 Heredity: Inheritance and Var	ation of Traits	
MS-LS3-2. Develop and use a model to c	lescribe why asexual reproduction results in offspring with identical gene	etic information and sexual reproduction
esults in offspring with genetic variatio	<u>n.</u>	
Clarification Statement: Emphasis is on a	using models such as Punnett squares, diagrams, and simulations to descri	be the cause and effect relationship of gene
transmission from parents) to offspring a	nd resulting genetic variation.	
Assessment Boundary: N/A		
Evidence Statements: MS-LS3-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	LS1.B: Growth and Development of Organisms	Cause and Effect
Modeling in 6–8 builds on K–5	LS1.B: Growth and Development of Organisms Organisms reproduce,	Cause and effect relationships may be used
experiences and progresses to developin	g, either sexually or asexually, and transfer their genetic information to	to predict phenomena in natural systems.
using, and revising models to describe,	their offspring. (secondary)	
test, and predict more abstract	LS3.A: Inheritance of Traits	
phenomena and design systems.	Variations of inherited traits between parent and offspring arise from	
Develop and use a model to describe	genetic differences that result from the subset of chromosomes (and	
phenomena.	therefore genes) inherited.	
	LS3.B: Variation of Traits	
	In sexually reproducing organisms, each parent contributes half of the	
	genes acquired (at random) by the offspring. Individuals have two of	
	each chromosome and hence two alleles of each gene, one acquired	
	from each parent. These versions may be identical or may differ from	
	each other.	
Connections to other DCIs in this grade-		
Articulation of DCIs across grade-bands	3.LS3.A ; 3.LS3.B ; HS.LS1.B ; HS.LS3.A ; HS.LS3.B	
NJSLS- ELA: RST.6-8.1, RST.6-8.4, RST.6-4	3.7, SL.8.5	
NJSLS- Math: MP.4, 6.SP.B.5		
	5E Model	
VIS-LS3-2. Develop and use a model to o	lescribe why asexual reproduction results in offspring with identical gene	etic information and sexual reproduction

GRADE: 7

results in offspring with	genetic variation.	
Engage	https://www.brainpop.com/science/cellularlifeandgenetics/asexualreproduction/preview.weml	
Anticipatory Set	http://learn.genetics.utah.edu/content/variation/reproduction/	
	https://www.youtube.com/watch?v=jk2RJm5RBEk	
	Mitosis Claymation Videos	
	http://betterlesson.com/lesson/639821/mitosis-claymation-videos	
	Monster Factory	
	In this lesson, students will focus on the big idea that traits are inherited. Students will simulate the inheritance of alleles for physical	
Exploration	traits and use those traits to create monster offspring.	
Student Inquiry	http://betterlesson.com/lesson/633980/monster-factory	
	Punnett and the Rules	
	Students will be able to set-up and complete a Punnett Square.	
	http://betterlesson.com/lesson/635051/punnett-and-the-rules	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	LS1.B: Growth and Development of Organisms Organisms reproduce, either sexually or asexually, and transfer their genetic	
Explanation	information to their offspring. (secondary)	
Concepts and Practices	LS3.A: Inheritance of Traits	
	Variations of inherited traits between parent and offspring arise from genetic differences that result from the subset of chromosomes	
	(and therefore genes) inherited.	
	LS3.B: Variation of Traits	
	In sexually reproducing organisms, each parent contributes half of the genes acquired (at random) by the offspring. Individuals have	
	two of each chromosome and hence two alleles of each gene, one acquired from each parent. These versions may be identical or may	
differ from each other.		
Elaboration	Related Activities (Go to MS-LS3-2 section of page)	
Extension Activity	http://www.ck12.org/ngss/middle-school-life-sciences/heredity:-inheritance-and-variation-of-traits	
Evaluation	Assessment Task A: Mitosis Video	

Cliffside Park Public Schools

GRADE: 7

BOE APPROVAL: August 2016

Assessment Tasks	Develop and use a model to describe phenomena
	Teacher will assess student videos according to pre-established criteria.
	Assessment Task B: Punnett Practice
	Develop and use a model to describe phenomena
	http://betterlesson.com/lesson/resource/3174264/punnett-practice
	Students will use the Punnett Square model that they created for their to describe why genetic variation occurs in offspring of sexual
	reproduction.
	Assessment Task C: Model Comparison
	After creating models of both asexual and sexual reproduction, students will draft a written explanation to describe why asexual
	reproduction results in offspring with identical genetic informationa nd exual reproduction results in offspring with genetic variation.

Unit 7: Overview Unit 7: Organization for Matter and Energy Flow in Organisms Grade: 7 Content Area: Life Science Pacing: 15 Instructional Days **Essential Question** How do some organisms turn electromagnetic radiation into matter and energy? **Student Learning Objectives (Performance Expectations)** MS-LS1-6. Construct a scientific explanation based on evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms. MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy as this matter moves through an organism. **Unit Summary** Students provide a mechanistic account for how cells provide a structure for the plant process of photosynthesis in the movement of matter and energy needed for the cell. Students use conceptual and physical models to explain the transfer of energy and cycling of matter as they construct explanations for the role of photosynthesis in cycling matter in ecosystems. They construct scientific explanations for the cycling of matter in organisms and the interactions of organisms to obtain matter and energy from an ecosystem to survive and grow. They understand that sustaining life requires substantial energy and matter inputs, and that the structure and functions of organisms contribute to the capture, transformation, transport, release, and elimination of matter and energy. The crosscutting

BOE APPROVAL: August 2016

concepts of matter and energy and structure and function provide a framework for understanding of the cycling of matter and energy flow into and out of organisms. Students are also expected to demonstrate proficiency in developing and using models. Students use these science and engineering practices to demonstrate understanding of the disciplinary core ideas.

Technical Terms

Sepals, petals, stamen, filament, anther, pistil, stigma, style, ovary, ovule, angiosperm, gymnosperm, pollination, fertilization, egg cell, sperm cell, zygote, embryo, dormancy, germination, photosynthesis, heterotrophic, light reactions, chloroplast, thylakoid, granum, stroma, visible spectrum of light, ATP synthase, Calvin cycle, carbon fixation

Formative Assessment Measures

Part A: What is the role of photosynthesis in the cycling of matter and flow of energy into and out of an organism?

Students who understand the concepts are able to:

Construct a scientific explanation for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms based on valid and reliable evidence obtained from sources (including the students' own experiments).

Construct a scientific explanation for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms based on the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Part B: How is food rearranged through chemical reactions to form new molecules that support growth and/or release energy as this matter moves through an organism?

Students who understand the concepts are able to:

Develop and use a model to describe how food is rearranged through chemical reactions.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and	Use variables to represent two quantities in a real-world problem that change in	
technical texts. (MS-LS1-6) RST.6-8.1	relationship to one another; write an equation to express one quantity, thought of as the	
Determine the central ideas or conclusions of a text; provide an	dependent variable, in terms of the other quantity, thought of as the independent	
accurate summary of the text distinct from prior knowledge or	variable. Analyze the relationship between the dependent and independent variables	
opinions. (MS-LS1-6)RST.6-8.2	using graphs and tables, and relate these to the equation. (MS-LS1-6) 6.EE.C.9	
Write informative/explanatory texts to examine a topic and convey		
ideas, concepts, and information through the selection, organization,		
and analysis of relevant content. (MS-LS1-6) WHST.6-8.2		
Draw evidence from informational texts to support analysis,		
reflection, and research. (MS-LS1-6) WHST.6-8.9		
Core Instructional Materials Can include: Textbooks Series, La	b Materials, etc.	

Cliffside Park Public Schools

GRADE: 7

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

21st Century Life and Careers	Lst Century Life and Careers CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12		
Technology Standards	Is 8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.1,8.1.8.D.2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1		
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

LIFE SCIENCE			
MS-LS1-6 From Molecules to Organisms: Structures and Process	ses		
MS-LS1-6. Construct a scientific explanation based on evidence	for the role of photosynthesis in the cycling of matter	and flow of energy into and out of	
organisms.			
Clarification Statement: Emphasis is on tracing movement of ma	tter and flow of energy.		
Assessment Boundary: Assessment does not include the biocher	nical mechanisms of photosynthesis.		
Evidence Statements: MS-LS1-6			
Science & Engineering Practices	Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts		
Constructing Explanations and Designing Solutions	LS1.C: Organization for Matter and Energy Flow in	Energy and Matter	
Constructing explanations and designing solutions in 6–8 builds	Organisms	Within a natural system, the transfer	
on K–5 experiences and progresses to include constructing	Plants, algae (including phytoplankton), and many	of energy drives the motion and/or	
explanations and designing solutions supported by multiple	microorganisms use the energy from light to make	cycling of matter.	

GRADE: 7

sources of evidence cor	evidence consistent with scientific knowledge, sugars (food) from carbon dioxide from the atmosphere		
principles, and theories.		and water through the process of photosynthesis, which	
Construct a scientific explanation based on valid and reliable		also releases oxygen. These sugars can be used	
evidence obtained from	n sources (including the students' own	immediately or stored for growth or later use.	
experiments) and the a	ssumption that theories and laws that	PS3.D: Energy in Chemical Processes and Everyday Life	
describe the natural wo	orld operate today as they did in the past	The chemical reaction by which plants produce complex	
and will continue to do	<u>so in the future.</u>	food molecules (sugars) requires an energy input (i.e.,	
Connections to Nature	of Science	from sunlight) to occur. In this reaction, carbon dioxide	
Scientific Knowledge is	Based on Empirical Evidence	and water combine to form carbon-based organic	
Science knowledge is ba	ased upon logical connections between	molecules and release oxygen. (secondary)	
evidence and explanation	ons.		
Connections to other D	OCIs in this grade-band: MS.PS1.B ; MS.ES	S2.A	
Articulation of DCIs acr	ross grade-bands: 5.PS3.D ; 5.LS1.C ; 5.LS2	2.A ; 5.LS2.B ; HS.PS1.B ; HS.LS1.C ; HS.LS2.B ; HS.ESS2.D	
NJSLS- ELA: RST.6-8.1, I	RST.6-8.2, WHST.6-8.2, WHST.6-8.9		
NJSLS- Math: 6.EE.C.9			
		5E Model	
MS-LS1-6. Construct a s	scientific explanation based on evidence	for the role of photosynthesis in the cycling of matter and	d flow of energy into and out of
organisms.			
Engage Anticipatory Set	http://studyjams.scholastic.com/studyja	ms/jams/science/plants/photosynthesis.htm	
	Have students view the following video, read the related essay and respond to the related discussion questions.		
		urce/tdc02.sci.life.stru.photosynth/photosynthesis/	on questions.
		nalogy for the process of photosynthesis in plants?	
	Why did Von Helmont think that plants got their nourishment from soil?		
Exploration	Why did he eliminate soil as a source of nourishment and focus on water?		
Student Inquiry			
	Illuminating Photosynthesis Have students complete the interactive activity which will investigate the process of photosynthesis.		
	-	urce/tdc02.sci.life.stru.methusweb/illuminating-photosynthes	
		nedia/assets/wgbh/tdc02/tdc02 doc photosyn/tdc02 doc	

Cliffside Park Public Schools

GRADE: 7

	Photosynthesis: Watch It Happen
	http://www.hometrainingtools.com/a/photosynthesis-project/
	How do organisms obtain and use matter and energy? How do matter and energy move through an ecosystem?
	Why are plants critical for the survival of animals? What do plants make that animals need?
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Funloyetica	LS1.C: Organization for Matter and Energy Flow in Organisms
Explanation	Plants, algae (including phytoplankton), and many microorganisms use the energy from light to make sugars (food) from carbon dioxide
Concepts and Practices	from the atmosphere and water through the process of photosynthesis, which also releases oxygen. These sugars can be used
	immediately or stored for growth or later use.
	PS3.D: Energy in Chemical Processes and Everyday Life The chemical reaction by which plants produce complex food molecules (sugars)
	requires an energy input (i.e., from sunlight) to occur. In this reaction, carbon dioxide and water combine to form carbon-based organic
	molecules and release oxygen. (secondary)
	Terrarium
Elaboration	Students will build a terrarium and then observe it throughout the unit. To build a simple soda bottle terrarium using stations in the
Extension Activity	classroom.
	http://www.uscsd.k12.pa.us/cms/lib02/PA01000033/Centricity/Domain/342/Pennsylvania_Terrariums_Lesson_Plan.pdf
	Assessment Task A: Written Scientific Explanation
	Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments)
Evaluation	and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do
Assessment Tasks	so in the future.
	Explanation should include evidence for the role of photosynthesis in the cycling of matter and flow of energy into and out of organisms
	Information learned in above activities should be used to construct the explanation.

LIFE SCIENCE
MS-LS1-7 From Molecules to Organisms: Structures and Processes
MS-LS1-7. Develop a model to describe how food is rearranged through chemical reactions forming new molecules that support growth and/or release energy
as this matter moves through an organism.

BOE APPROVAL: August 2016

Clarification Statement: Emphasis is on describing that molecules are broken apart and put back together and that in this process, energy is released.

Assessment Boundary: Assessment does not include details of the chemical reactions for photosynthesis or respiration.

Evidence Statements: MS-LS1-7

Science & Engineering	Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models		LS1.C: Organization for Matter and Energy Flow in Organisms	Energy and Matter	
Modeling in 6–8 builds on K–5 e	xperiences and	Within individual organisms, food moves through a series of	Matter is conserved because atoms are	
progresses to developing, using,	and revising	chemical reactions in which it is broken down and rearranged to	conserved in physical and chemical processes.	
models to describe, test, and pro	edict more	form new molecules, to support growth, or to release energy.		
abstract phenomena and design	systems.			
Develop a model to describe une	observable_	PS3.D: Energy in Chemical Processes and Everyday Life Cellular		
<u>mechanisms.</u>		respiration in plants and animals involve chemical reactions with		
		oxygen that release stored energy. In these processes, complex		
		molecules containing carbon react with oxygen to produce		
		carbon dioxide and other materials.(secondary)		
Connections to other DCIs in th	is grade-band: MS	.PS1.B		
Articulation of DCIs across grad	e-bands: 5.PS3.D ;	5.LS1.C ; 5.LS2.B ; HS.PS1.B ; HS.LS1.C ; HS.LS2.B		
NJSLS- ELA: SL.8.5				
NJSLS- Math: N/A				
		5E Model		
MS-LS1-7. Develop a model to c	lescribe how food	is rearranged through chemical reactions forming new molecule	es that support growth and/or release energy	
as this matter moves through a	<u>n organism.</u>			
ht	tp://ed.ted.com/le	essons/the-simple-but-fascinating-story-of-photosynthesis-and-fo	od-amanda-ooten	
ht	http://www.pbslearningmedia.org/asset/tdc02_int_energyflow/			
Co	Continue the lesson by having students journal in their notebooks all the food that they ate from either dinner or lunch. Students			
Engage sh	should then categorize the food items into plant or animal. Students should then identify what the animals eat as their food source.			
Anticipatory Set Te	Teacher facilitates student discussion leading students to the idea that all food traces back to plants. Students are encouraged to find			
fo	food items they believe do not trace back to plants in order to enhance discussion.			
Pose the question: "Why are plants so essential to animals?"				
Exploration Int	Introduction:			
	All parts of the body (muscles, brain, heart, and liver) need energy to work. This energy comes from the food we eat.			

SUBJECT: SCIENCE Grade 7 BOE APPROVAL: August 2016

	Our bodies digest the food we eat by mixing it with fluids (acids and enzymes) in the stomach. When the stomach digests food, the		
	carbohydrate (sugars and starches) in the food breaks down into another type of sugar, called glucose.		
	The stomach and small intestines absorb the glucose and then release it into the bloodstream. Once in the bloodstream, glucose can		
	be used immediately for energy or stored in our bodies, to be used later.		
	In groups, have students develop a diagram which demonstrates the chemical changes that food undergoes and how these changes		
	result in the release of energy. A sample model may begin with the food item, the eating of the item and then the digestion of the		
	item. At each step students should be identifying how the food item was rearranged, where are the molecules going, what are the		
	molecules/energy being used for by the organism.		
	Have students walk around the room and look at each other's diagrams. Have them discuss what they noticed about each other's		
	diagrams. If you have access to a document camera you can use this to share the diagrams. Guide the discussion to focus on different		
	steps that groups may have illustrated. Have the class select the steps to make 1 class model.		
	Exploration Questions:		
	How do organisms obtain and use matter and energy?		
	How do matter and energy move through an ecosystem? Why are plants critical for the survival of animals?		
	What do plants make that animals need?		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	LS1.C: Organization for Matter and Energy Flow in Organisms		
Concepts and Practices	Within individual organisms, food moves through a series of chemical reactions in which it is broken down and rearranged to form		
	new molecules, to support growth, or to release energy.		
	PS3.D: Energy in Chemical Processes and Everyday Life Cellular respiration in plants and animals involve chemical reactions with		
	oxygen that release stored energy. In these processes, complex molecules containing carbon react with oxygen to produce carbon		
	dioxide and other materials.(secondary)		
	Digital Presentation		
Elaboration	Have students synthesize the information they have gathered from the class diagrams to create a digital presentation which illustrates		
Extension Activity	the chemical reactions of food and how this transfers into energy. Students should incorporate information presented in all group		
	diagrams.		
Evaluation	Assessment Task A: 3D Model		
Assessment Tasks	Develop a model to describe unobservable mechanisms.		

GRADE: 7

Use attached rubric to assess models created by students.
3D Model Rubric

Unit 8: Overview
Unit 8: Earth Systems
Grade: 7
Content Area: Earth and Space Science
Pacing: 30 Instructional Days
Essential Question
If no one was there, how do we know the Earth's history?
What provides the forces that drive Earth's systems?
Student Learning Objectives (Performance Expectations)
MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billion-year-old
history.
MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.
MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate
motions.
Unit Summary
Students examine geoscience data in order to understand processes and events in Earth's history. Important crosscutting concepts in this unit are scale,
proportion, and quantity, stability and change, and patterns in relation to the different ways geologic processes operate over geologic time. An important aspect of
the history of Earth is that geologic events and conditions have affected the evolution of life, but different life forms have also played important roles in altering
Earth's systems. Students understand how Earth's geosystems operate by modeling the flow of energy and cycling of matter within and among different systems.
Students investigate the controlling properties of important materials and construct explanations based on the analysis of real geoscience data. Students are
expected to demonstrate proficiency in analyzing and interpreting data and constructing explanations. They are also expected to use these practices to
demonstrate understanding of the core ideas.
Technical Terms
Geoscience, erratic, valley glacier, continental glacier, calving, till, drumlin, crevasse, arete, horn, hanging valley, cirque, torn, Lateral Moraine, Medial Moraine,
Terminal Moraine, Glacier Trough, Glacier Trough, scale, proportions

GRADE: 7

BOE APPROVAL: August 2016

Formative Assessment Measures

Part A: How do we know that the Earth is approximately 4.6-billion-year-old history?

Students who understand the concepts are able to:

Construct a scientific explanation based on valid and reliable evidence from rock strata obtained from sources (including the students' own experiments).

Construct a scientific explanation based on rock strata and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Part B: What drives the cycling of Earth's materials?

Students who understand the concepts are able to:

Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Part C: Do all of the changes to Earth systems occur in similar time scales?

Students who understand the concepts are able to:

Construct a scientific explanation for how geoscience processes have changed Earth's surface at varying time and spatial scales based on valid and reliable evidence obtained from sources (including the students' own experiments).

Construct a scientific explanation for how geoscience processes have changed Earth's surface at varying time and spatial scales based on the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future.

Collect evidence about processes that change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges).

Collect evidence about processes that change Earth's surface at time and spatial scales that can be small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events.

Part D: How is it possible for the same kind of fossils to be found in New Jersey and in Africa?

Students who understand the concepts are able to:

Analyze and interpret data such as distributions of fossils and rocks, continental shapes, and seafloor structures to provide evidence of past plate motions.

Analyze how science findings have been revised and/or reinterpreted based on new evidence about past plate motions.

Interdisciplinary Connections

NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to support analysis of science and	Use variables to represent quantities in a real-world or mathematical problem, and
technical texts. (MS-ESS1-4),(MS-ESS2-2)RST.6-8.1	construct simple equations and inequalities to solve problems by reasoning about the
Write informative/explanatory texts to examine a topic and convey	quantities. (MS-ESS2-2),(MS-ESS2-3) 7.EE.B.4
ideas, concepts, and information through the selection, organization,	Use variables to represent numbers and write expressions when solving a real-world or
and analysis of relevant content. (MS-ESS1-4),(MS-ESS2-2)WHST.6-8.2	mathematical problem; understand that a variable can represent an unknown number, or,

Cognates

SUBJECT: SCIENCE Grade 7

Cliffside Park Public Schools

2),(MS-ESS2-3) 6.EE.B.6

GRADE: 7

depending on the purpose at hand, any number in a specified set. (MS-ESS1-4),(MS-ESS2-

BOE APPROVAL: August 2016 Integrate quantitative or technical information expressed in words in a text with a version of that information expressed visually (e.g., in a flowchart, diagram, model, graph, or table). (MS-ESS2-3) RST.6-8.7 Compare and contrast the information gained from experiments.

Color contrast

flowchart, diagram, model, graph, or table). (MS-ESS2-3) RST.6-8.7		Use variables to represent quantities in a real-world or mathematical problem, and	
Compare and contrast the information gained from experiments,		construct simple equations and inequalities to solve problems by reasoning about the	
simulations, video, or multimedia sources with that gained from reading		quantities. (MS-ESS1-4) 7.EE.B.6	
a text on the same topic. (MS-ESS2-	-3) RST.6-8.9	Reason abstractly and quantitative	ly. (MS-ESS2-2),(MS-ESS2-3) MP.2
Integrate multimedia and visual dis	plays into presentations to clarify		
information, strengthen claims and	evidence, and add interest. (MS-		
ESS2-1),(MS-ESS2-2) SL.8.5			
Core Instructional Materials	Can include: Textbooks Series, Lab	Materials, etc.	
21st Century Life and Careers	21st Century Life and Careers CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12		
Technology Standards	Technology Standards 8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.1, 8.1.8.D.2, 8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1,		8.1.8.D.3, 8.1.8.D.4, 8.1.8.D.5, 8.2.8.A.2, 8.2.8.B.1,
Modifications			
English Language Learners Special Education		At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		

GRADE: 7

EARTH AND SPACE SCIENCES

MS-ESS1-4 Earth's Place in the Universe

MS-ESS1-4. Construct a scientific explanation based on evidence from rock strata for how the geologic time scale is used to organize Earth's 4.6-billionyear-old history.

Clarification Statement: Emphasis is on how analyses of rock formations and the fossils they contain are used to establish relative ages of major events in Earth's history. Examples of Earth's major events could range from being very recent (such as the last Ice Age or the earliest fossils of homo sapiens) to very old (such as the formation of Earth or the earliest evidence of life). Examples can include the formation of mountain chains and ocean basins, the evolution or extinction of particular living organisms, or significant volcanic eruptions.

Assessment Boundary: Assessment does not include recalling the names of specific periods or epochs and events within them.

Evidence Statements: MS-ESS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ESS1.C: The History of Planet Earth	Scale, Proportion, and Quantity
Constructing explanations and designing solutions in 6–8	The geologic time scale interpreted from rock	Time, space, and energy phenomena can
builds on K–5 experiences and progresses to include	strata provides a way to organize Earth's history.	be observed at various scales using
constructing explanations and designing solutions	Analyses of rock strata and the fossil record	models to study systems that are too large
supported by multiple sources of evidence consistent with	provide only relative dates, not an absolute scale.	<u>or too small.</u>
scientific ideas, principles, and theories.		
Construct a scientific explanation based on valid and		
reliable evidence obtained from sources (including the		
students' own experiments) and the assumption that		
theories and laws that describe the natural world operate		
today as they did in the past and will continue to do so in		
the future.		
Connections to other DCIs in this grade-band: MS.LS4.A ; M	S.LS4.C	
Articulation of DCIs across grade-bands: 3.LS4.A ; 3.LS4.C ; 3	B.LS4.D ; 4.ESS1.C ; HS.PS1.C ; HS.LS4.A ; HS.LS4.C ; HS	.ESS1.C ; HS.ESS2.A
NJSLS- ELA: RST.6-8.1, WHST.6-8.2		
NJSLS- Math: 6.EE.B.6, 7.EE.B.6		
	5E Model	
MS-ESS1-4. Construct a scientific explanation based on evid	ence from rock strata for how the geologic time scale	e is used to organize Earth's 4.6-billion-
year-old history.		

Cliffside Park Public Schools

GRADE: 7

Engage Anticipatory Set	How do geologists understand the Earth's history? In part, they measure the age of rocks and other natural materials by dating techniques. They can date rocks by gauging the amount of decay of radioactive elements. The time necessary for half of any given amount of one element (the "parent element") to decay to become another element (the "daughter element") is called the element's "half-life. <u>Geologic Time Scale: Video and Quiz</u> <u>http://study.com/academy/lesson/geologic-time-scale-major-eons-eras-periods-and-epochs.html</u>
Exploration Student Inquiry	In these activities, students simulate the dating process with popcorn. Popcorn starts out as unpopped "parent" kernels. Heating causes the kernels to begin popping, thereby starting your simulated "radioactive decay clock" and producing popped "daughter" popcorn. The half-life of your kernel-popcorn material is the time necessary for half of the given kernels to become popcorn. http://geoinfo.nmt.edu/education/exercises/PopcornDating/home.html <u>Geological Time Project</u> In this multi-day project, student will explore how Earth's rocks and other materials provide a record of its history. <u>http://betterlesson.com/lesson/637351/geologic-time-mini-project</u>
Explanation Concepts and Practices	In these lessonsTeachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.ESS1.C: The History of Planet EarthThe geologic time scale interpreted from rock strata provides a way to organize Earth's history. Analyses of rock strata and the fossilrecord provide only relative dates, not an absolute scale.
Elaboration Extension Activity	Biostratigraphy Students will investigate how index fossils are used to construct the geologic time scale. Students will investigate the evidence used to construct the geologic time scale and recognize that the evidence used to construct the geologic time scale comes from observations from all over the world and includes fossil evidence, radiometric age data and comparative studies of different rock sequences. Students will learn how fossils are used to construct the geologic time scale. https://gtm-media.discoveryeducation.com/videos/DSC/data/ESS_TX_GeologicTimeScale_HOL_Biostratigraphy.pdf

GRADE: 7

Evaluation Assessment Tasks	Assessment Task A: (Dating Popcorn activity) Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future. Students will examine charts and graphs created. Using the following guiding questions, students will construct a written explanation based on evidence from activity, theories, and laws. Guiding questions: Discuss the ways in which experimental errors can affect your results. How might your experimental popcornium/kernelite decay system differ from a natural radioactive decay process, such as occurs in volcanic ash layers in ice cores? How else might scientists use radio isotopic dating to study climate history and other geologic records?	
	Assessment Task B: Geological Time Data Sheet https://docs.google.com/document/d/12dNUjd6aiwodMKt42OZyV4tVr1joD3JlzjgB2JvkPfo/edit Assessment Task C: Geological Time Interactive Poster	
	Use the following Poster Rubric http://betterlesson.com/lesson/resource/3297665/rubric-geologic-time-interactive-poster?from=resource_image	

GRADE: 7

EARTH AND SPACE SCIENCE

MS-ESS2-1 Earth's Systems

MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process.

Clarification Statement: Emphasis is on the processes of melting, crystallization, weathering, deformation, and sedimentation, which act together to form minerals and rocks through the cycling of Earth's materials.

Assessment Boundary: Assessment does not include the identification and naming of minerals.

Evidence Statements: MS-ESS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS2.A: Earth's Materials and Systems	Stability and Change
Modeling in 6–8 builds on K–5 experiences and	All Earth processes are the result of energy flowing and	Explanations of stability and change in natural
progresses to developing, using, and revising	matter cycling within and among the planet's systems.	or designed systems can be constructed by
models to describe, test, and predict more	This energy is derived from the sun and Earth's hot	examining the changes over time and processes
abstract phenomena and design systems.	interior. The energy that flows and matter that cycles	at different scales, including the atomic scale.
Develop and use a model to describe	produce chemical and physical changes in Earth's	at anterent scales, metadnig the atomic scale.
phenomena.		
	materials and living organisms.	

Connections to other DCIs in this grade-band: MS.PS1.A ; MS.PS1.B ; MS.PS3.B ; MS.LS2.B ; MS.LS2.C ; MS.ESS1.B ; MS.ESS3.C

Articulation of DCIs across grade-bands: 4.PS3.B ; 4.ESS2.A ; 5.ESS2.A ; HS.PS1.B ; HS.PS3.B ; HS.LS1.C ; HS.LS2.B ; HS.ESS2.A ; HS.ESS2.C ; HS.ESS2.E

NJSLS- ELA: SL.8.5

NJSLS- Math: N/A

SE Model MS-ESS2-1. Develop a model to describe the cycling of Earth's materials and the flow of energy that drives this process. Form small groups of students and distribute chart paper, markers, and rock samples. Each group will investigate its given rock samples and sort them according to common characteristics (crystallization, smooth, glassy, etc.). Then each group will record these characteristics on the chart paper. The teacher will circulate around the room and ask guiding questions (EX: Explain how you characterized your rock samples. Why did you sort these rocks the way you did?) One student representative from each group will visit another group and observe how that group categorized their rock samples. They will return to their original group and discuss the comparisons. Anticipatory Set The teacher will engage the students in a whole group discussion about the engagement activity. The teacher will help students build upon prior knowledge of the different types of rocks: sedimentary, igneous, and metamorphic. Then students will view a short video clip that further details the journey a rock takes through the rock cycle. https://www.khanacademy.org/partner-content/mit-k12/mit-k12-biology/v/rock-cycle (Grade level videos- also covers the flow of

Cliffside Park Public Schools

GRADE: 7

BOE APPROVAL: Au	igust 2016
	energy) http://studyjams.scholastic.com/studyjams/jams/science/rocks-minerals-landforms/rock-cycle.htm https://www.youtube.com/watch?v=uAAeFB7Tv5A
Exploration Student Inquiry	Present the online PowerPoint: Energy in the Rock Cycle http://www.uen.org/Lessonplan/downloadFile.cgi?file=36937-2-43128-EnergyinCyclePPTpptx&filename=EnergyinCyclePPTpptx Ride the Rock Cycle http://teacherstryscience.org/lp/ride-rock-cycle In this multi day lesson, students will: Participate in a kinesthetic activity related to the rock cycle Compare/ contrast representations of data Design their own simulation of the rock cycle Activity 1: Ride the Rock Cycle In this interactive game, students will act as a rock going through the rock cycle. Students will track their journey using the Journey on the Rock Cycle worksheet. Students will synthesize the information gathered during the activity by creating a Comic Strip that outlines the process of the rock cycle. Activity 4: Design & Simulation Task Students will explore the environmental factors that can affect rocks including erosion/weathering, deposition, cementation/ compaction, heating, pressure, and cooling.
Explanation Concepts and Practices	In these lessonsTeachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.ESS2.A: Earth's Materials and SystemsAll Earth processes are the result of energy flowing and matter cycling within and among the planet's systems. This energy is derivedfrom the sun and Earth's hot interior. The energy that flows and matter that cycles produce chemical and physical changes in Earth'smaterials and living organisms.
Elaboration Extension Activity	In this extension activity, students will describe which processes might be affecting a given region, using evidence from natural features presented on a map. Rock Cycle Roundabout <u>http://www.calacademy.org/educators/lesson-plans/rock-cycle-roundabout</u>

GRADE: 7

BOE APPROVAL: August 2016

	Assessment Task A: Ride the Rock Cycle- Comic Strip Student Worksheets and Rubrics
Evaluation	
Assessment Tasks	Assessment Task B: Environmental Factors Rubric
	Develop and use a model to describe phenomena.
	Student Worksheets and Rubrics

EARTH AND SPACE SCIENCE

MS-ESS2-2 Earth's Systems

MS-ESS2-2. Construct an explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.

Clarification Statement: Emphasis is on how processes change Earth's surface at time and spatial scales that can be large (such as slow plate motions or the uplift of large mountain ranges) or small (such as rapid landslides or microscopic geochemical reactions), and how many geoscience processes (such as earthquakes, volcanoes, and meteor impacts) usually behave gradually but are punctuated by catastrophic events. Examples of geoscience processes include surface weathering and deposition by the movements of water, ice, and wind. Emphasis is on geoscience processes that shape local geographic features, where appropriate.

Assessment Boundary: N/A

Evidence Statements: MS-ESS2-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	ESS2.A: Earth's Materials and Systems	Scale Proportion and Quantity
Solutions	The planet's systems interact over scales that range from	Time, space, and energy phenomena can be
Constructing explanations and designing	microscopic to global in size, and they operate over fractions	observed at various scales using models to
solutions in 6–8 builds on K–5 experiences and	of a second to billions of years. These interactions have	study systems that are too large or too
progresses to include constructing explanations	shaped Earth's history and will determine its future.	small.
and designing solutions supported by multiple	ESS2.C: The Roles of Water in Earth's Surface Processes	Sindhi
sources of evidence consistent with scientific	Water's movements—both on the land and underground—	
ideas, principles, and theories.	cause weathering and erosion, which change the land's	
Construct a scientific explanation based on valid	surface features and create underground formations.	
and reliable evidence obtained from sources		
(including the students' own experiments) and		
the assumption that theories and laws that		
describe nature operate today as they did in the		
past and will continue to do so in the future.		
Connections to other DCIs in this grade-band: MS.PS1.B ; MS.LS2.B		

GRADE: 7

Articulation of DCIs acr	oss grade-bands: 4.ESS1.C ; 4.ESS2.A ; 4.ESS2.E ; 5.ESS2.A ; HS.PS3.D ; HS.LS2.B ; HS.ESS1.C ; HS.ESS2.A ; HS.ESS2.B ; HS.ESS2.C ;
HS.ESS2.D ; HS.ESS2.E ;	• • • • • • • • • • • •
NJSLS- ELA: RST.6-8.1, V	NHST.6-8.2, SL.8.5
NJSLS- Math: MP.2, 6.E	E.B.6, 7.EE.B.4
	5E Model
MS-ESS2-2. Construct a	n explanation based on evidence for how geoscience processes have changed Earth's surface at varying time and spatial scales.
	Weather and Erosion Introduction Activity:
Engage	http://www.scoe.net/slypark/pdf/Pre_Sly_Park-Shaping_Earth's_Surface_Activity.pdf
Anticipatory Set	Plate Tectonics Video:
	http://education.nationalgeographic.org/media/plate-tectonics/
	Geological Timeline: Discovery
	The purpose of this lesson is to introduce students to the features of geologic timelines.
	http://betterlesson.com/lesson/637787/geologic-timeline-discovery
	Convection Current
	http://betterlesson.com/lesson/633215/convection-currents
	In this activity, students will identify that temperature change impacts the density of a substance, and the resulting change can
	cause movement inside the Earth.
Exploration	In completing these activities, students will have concrete experiences that they can refer to when constructing explanations
Student Inquiry	about the big idea- how geoscience processes have changed Earth's surface.
Student inquiry	Have students construct an explanation to the following questions. Explanations should be based on evidence they gained from the activity,
	Scientists have estimated that the temperature of the Earth's core may be as warm as 10,800 degrees Fahrenheit - how is the
	Earth's mantle which lies just above the core affected by the temperature of the Earth's core?
	What happens as the mantle is heated?
	What happens as it becomes less dense?
	What happens to the mantle as the heated material rises?
	We call the circular motion created by the heating and cooling of fluids a convection current.
	How might this convection current cause tectonic plate movement?

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 7

In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS2.A: Earth's Materials and Systems Explanation The planet's systems interact over scales that range from microscopic to global in size, and they operate over fractions of a **Concepts and Practices** second to billions of years. These interactions have shaped Earth's history and will determine its future. ESS2.C: The Roles of Water in Earth's Surface Processes Water's movements—both on the land and underground—cause weathering and erosion, which change the land's surface features and create underground formations. **Related Activities** Elaboration Earth Science Week MS-ESS2-2 Extension Activity http://www.earthsciweek.org/ngss-performance-expectations/ms-ess2-2 Assessment Task A: Constructed-Responses Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own Evaluation experiments) and the assumption that theories and laws that describe nature operate today as they did in the past and will Assessment Tasks continue to do so in the future.

EARTH AND SPACE SCIENCE

MS-ESS2-3 Earth's Systems

MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past plate motions.

Clarification Statement: Examples of data include similarities of rock and fossil types on different continents, the shapes of the continents (including continental shelves), and the locations of ocean structures (such as ridges, fracture zones, and trenches).

Assessment Boundary: Paleomagnetic anomalies in oceanic and continental crust are not assessed.

Evidence Statements: MS-ESS2-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ESS1.C: The History of Planet Earth	Patterns
Analyzing data in 6–8 builds on K–5	Tectonic processes continually generate new ocean sea	Patterns in rates of change and other
experiences and progresses to extending	floor at ridges and destroy old sea floor at trenches.	numerical relationships can provide
quantitative analysis to investigations,	(HS.ESS1.C GBE),(secondary)	information about natural systems.
distinguishing between correlation and	ESS2.B: Plate Tectonics and Large-Scale System	
causation, and basic statistical techniques of	Interactions	

BOE APPROVAL: August 2016

GRADE: 7

data and error analysis.		Maps of ancient land and water patterns, based on		
Analyze and interpret data to		investigations of rocks and fossils, make clear how Earth's		
similarities and differences in		plates have moved great distances, collided, and spread		
Connections to Nature of Sci		apart.		
Scientific Knowledge is Open	to Revision in			
Light of New Evidence				
Science findings are frequent	•			
reinterpreted based on new e	evidence.			
Connections to other DCIs in this grade-band: MS.LS4.B				
Articulation of DCIs across grade-bands: 3.LS4.A ; 3.ESS3.B ; 4.ESS1.C ; 4.ESS2.B ; 4.ESS3.B ; HS.LS4.A ; HS.LS4.C ; HS.ESS1.C ; HS.ESS2.A ; HS.ESS2.B				
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9				
NJSLS- Math: MP.2, 6.EE.B.6, 7.EE.B.4				
5E Model				
MS-ESS2-3. Analyze and interpret data on the distribution of fossils and rocks, continental shapes, and seafloor structures to provide evidence of the past				
plate motions.				
Engage	Fossil Evidence of P	ossil Evidence of Plate Tectonics		
Anticipatory Set	https://prezi.com/plwzjedxstfi/fossil-evidence-of-plate-tectonics/			
	The Theory of Plate	Tectonics		
	nics.			
	https://www.teachengineering.org/collection/csm_/activities/csm_platetectonics/csm_platetectonics_activity1_worksheet_v3_			
Exploration	tedl_dwc.pdf	<u>edl_dwc.pdf</u>		
Student Inquiry Pangaea- Wegener's Puzzling Evidence				
In this activity, students will use fossil evidence and maps to write an evidence-based position statement defending or refutil				
	the theory of continental drift.			
	http://betterlesson	.com/lesson/635197/pangaea-wegener-s-puzzling-evidence		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 7

In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS1.C: The History of Planet Earth Explanation Tectonic processes continually generate new ocean sea floor at ridges and destroy old sea floor at trenches. (HS.ESS1.C **Concepts and Practices** GBE),(secondary) ESS2.B: Plate Tectonics and Large-Scale System Interactions Maps of ancient land and water patterns, based on investigations of rocks and fossils, make clear how Earth's plates have moved great distances, collided, and spread apart. Elaboration Plate Tectonics Puzzle American Museum of Natural History: Plate Tectonic Puzzle **Extension Activity** Assessment Task A: Theory of Plate Tectonics- Position Paper Analyze and interpret data to determine similarities and differences in findings. The Theory of Plate Tectonics: Using information learned from activity, students will determine whether they would support Wegener's hypothesis or not. Then students will construct a written explanation that explains their position. **Evaluation** Assessment Tasks Assessment Task B: Pangaea - Wegener's Puzzling Evidence- Position Paper After modeling the stating of specific evidence as a whole class discussion, students write a position statement in their science journals. The requirement is to cite four pieces of compelling evidence that leads them to agree or disagree with Wegener's ideas about plate movement using their maps and fossil evidence.