

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016 **GRADE: 9-12**

Unit 1: Overview
Unit 1: Structures and Properties of Matter
Content Area: Chemistry
Pacing: 30 Instructional Days
Essential Question
low can the substructures of atoms explain the observable properties of substances?
Student Learning Objectives (Performance Expectations)
IS-PS1-1: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level o
toms.
IS-PS1-2: Construct and revise an explanation for the outcome of a simple chemical reaction based on the outermost electron states of atoms, trends in the periodic table, and knowledge of the patterns of chemical properties.
IS-PS1-3 Plan and conduct an investigation to gather evidence to compare the structure of substances at the bulk scale to infer the strength of electrical orces between particles.
IS-PS2-6: Communicate scientific and technical information about why the molecular-level structure is important in the functioning of designed materials.
Unit Summary
n this unit of study, students use investigations, simulations, and models to makes sense of the substructure of atoms and to provide more mechanistic explanations of the properties of substances. Chemical reactions, including rates of reactions and energy changes, can be understood by students at this leve in terms of the collisions of molecules and the rearrangements of atoms. Students are able to use the periodic table as a tool to explain and predict the properties of elements. Students are expected to communicate scientific and technical information about why the molecular-level structure is important in he functioning of designed materials. The crosscutting concepts of structure and function, patterns, energy and matter, and stability and change are called but as the framework for understanding the disciplinary core ideas. Students use developing and using models, planning and conducting investigations, using nathematical thinking, and constructing explanations and designing solutions. Students are also expected to use the science and engineering practices to lemonstrate proficiency with the core ideas.
Technical Terms
Periodic Table of Elements, electrons, atoms, bonds, ions, Dmitri Mendeleev, nucleus, protons, neutrons, Atomic Radii, Ionization Energy, Electronegativity and Electron Affinity, atomic number, macroscopic level, Law of Conservation of Matter, particles, intermolecular forces, melting point and boiling point, apor pressure, surface tension, polar, Ionic Properties, Molecular Properties, conductivity, malleability
Formative Assessment Measures
Part A: How can a periodic table tell me about the subatomic structure of a substance?
itudents who understand the concepts are able to: Jse the periodic table as a model to provide evidence for relative properties of elements at different scales based on the patterns of electrons in the outermost energy level of atoms in main group elements. Jse the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms in

BOE APPROVAL: August 2016

main group elements.

Part B: How can I use the periodic table to predict if I need to duck before mixing two elements?

Students who understand the concepts are able to:

Use valid and reliable evidence (obtained from students' own investigations, models, theories, simulations, and peer review) showing the outermost electron states of atoms, trends in the periodic table, and patterns of chemical properties to construct and revise an explanation for the outcome of a simple chemical reaction.

Use the assumption that theories and laws that describe the outcome of simple chemical reactions operate today as they did in the past and will continue to do so in the future.

Observe patterns in the outermost electron states of atoms, trends in the periodic table, and chemical properties.

Use the conservation of atoms and the chemical properties of the elements involved to describe and predict the outcome of a chemical reaction.

Part C: How can I use the properties of something (in bulk quantities) to predict what is happening with the subatomic particles?

Students who understand the concepts are able to:

Plan and conduct an investigation individually and collaboratively to produce data that can serve as the basis for evidence for comparing the structure of substances at the bulk scale to infer the strength of electrical forces between particles. In the investigation design, decide on types, how much, and accuracy of data needed to produce reliable measurements; consider limitations on the precision of the data (e.g., number of trials, cost, risk, time); and refine the design accordingly.

Use patterns in the structure of substances at the bulk scale to infer the strength of electrical forces between particles.

Part D: I want to do the right thing, what is the greener choice for grocery bags (paper or plastic/reusable vs. disposable); cold drink containers (plastic, glass, or aluminum); or hot drink containers (paper, Styrofoam, or ceramic)?

Students who understand the concepts are able to:

Communicate scientific and technical information about why the molecular - level structure is important in the functioning of designed materials.

Evaluate a solution to a complex real-world problem based on scientific knowledge, student generated sources of evidence, prioritized criteria, and tradeoffs considerations to determine why the molecular level structure is important in the functioning of designed materials.

Use mathematical models and/or computer simulations to show why the molecular level structure is important in the functioning of designed materials. Communicate scientific and technical information about the attractive and repulsive forces that determine the functioning of the material.

Use mathematical models and/or computer simulations to show the attractive and repulsive forces that determine the functioning of the material.

Examine in detail the properties of designed materials, the structure of the components of designed materials, and the connections of the components to reveal the function.

Use models (e.g., physical, mathematical, computer models) to simulate systems of designed materials and interactions--including energy, matter, and information flows--within and between designed materials at different scales.

Interdiscipli	nary Connections
NJSLS- ELA	NJSLS- Mathematics
RST.11-12.1 Cite specific textual evidence to support analysis of science and	MP.2 Reason abstractly and quantitatively. (HS-ETS1-3),(HS-ETS1-4)
technical texts, attending to important distinctions the author makes and to	MP.4 Model with mathematics. (HS-ETS1-3),(HS-ETS1-4)
any gaps or inconsistencies in the account. (HS-PS1-3)	HSN-Q.A.1 Use units as a way to understand problems and to guide the solution

Cliffside Park Public Schools

(HS-PS1-2),(HS-PS1-3)

GRADE: 9-12

of multi-step problems; choose and interpret units consistently in formulas:

choose and interpret the scale and the origin in graphs and data displays.

BOE APPROVAL: August 2016 WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical

processes. (HSPS1-2) WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-PS1-2),(HS-ETS1-3)

WHST.9-12.7 Conduct short as well as more sustained research projects to answer a question (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS1-3)

WHST.11-12.8 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS1-3),(HS-ETS1-3) WHST.9-12.9 Draw evidence from informational texts to support analysis,

reflection, and research. (HS-PS1-3),(HS-ETS1-3) SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS1-4)

· · · ·		
Core Instructional Materials Can include: Textbooks Series, Lab Materials, etc.		Can include: Textbooks Series, Lab Materials, etc.
2	1st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12
Т	echnology Standards	8.1.12.A.2,8.1.12.A.4,8.1.12.A.5, 8.1.12.E.1,8.2.12.D.1

Modifications

Wodifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork

Cliffside Park Public Schools

GRADE: 9-12

Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY HS-PS1-1 Matter and its Interactions HS-PS1-1: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Clarification Statement: Examples of properties that could be predicted from patterns could include reactivity of metals, types of bonds formed, numbers of bonds formed, and reactions with oxygen. Assessment Boundary: Assessment is limited to main group elements. Assessment does not include quantitative understanding of ionization energy beyond relative trends. Evidence Statements: HS-PS1-1 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts Developing and Using Models** PS1.A: Structure and Properties of Matter **Patterns** Modeling in 9–12 builds on K–8 and progresses to using, Each atom has a charged substructure consisting of a nucleus, Different patterns may be synthesizing, and developing models to predict and which is made of protons and neutrons, surrounded by electrons. observed at each of the scales at show relationships among variables between systems The periodic table orders elements horizontally by the number of which a system is studied and can and their components in the natural and designed protons in the atom's nucleus and places those with similar provide evidence for causality in worlds. chemical properties in columns. The repeating patterns of this explanations of phenomena. Use a model to predict the relationships between table reflect patterns of outer electron states. systems or between components of a system. Connections to other DCIs in this grade: HS.LS1.C Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS1.B NJSLS- ELA: RST.9-10.7 NJSLS- Math: N/A 5E Model HS-PS1-1: Use the periodic table as a model to predict the relative properties of elements based on the patterns of electrons in the outermost energy level of atoms. Bohr's Model and Valence Electrons The students explore the atom using the NGSS Practices of Developing and Using Models. http://betterlesson.com/lesson/614383/bohr-s-model-and-valence-electrons Engage Build An Atom Anticipatory Set This could be used as both an engage and an exploration depending on the task. Ask students to build any atom. Refer to the location of the atom they built. They may draw the atom they build. Write one or more patterns that you observed. http://phet.colorado.edu/sims/html/build-an-atom/latest/build-an-atom_en.html

Cliffside Park Public Schools

GRADE: 9-12

	Mendeleev Periodic Table Lab
	http://www.nwasco.k12.or.us/cms/lib04/OR01001464/Centricity/Domain/97/Mendeleev%20Periodic%20Table%20Lab%20Assignm
	<u>ent.pdf</u>
	Exploring the Periodic Table
	http://betterlesson.com/lesson/629234/exploring-the-periodic-table
	Flame Test Lab
	The purpose is to observe the characteristic colors produced by certain metallic ions when vaporized in a flame and then to identify
	an unknown metallic ion by means of its flame test.
	http://www.barbertonschools.org/Downloads/flame_test_lab.doc.
	Electron Configuration
Exploration	The purpose is to observe the characteristic colors produced by certain metallic ions when vaporized in a flame and then to identify
Student Inquiry	an unknown metallic ion by means of its flame test.
	http://betterlesson.com/lesson/631736/electron-configuration
	Electron Configuration- Part 1
	Students will be able to explain how electrons are located in energy levels and how to determine the number of valence electrons for
	atoms through completing an inquiry-style paper.
	http://betterlesson.com/lesson/619481/electron-configuration-part-i
	Electron Configuration- Part 2
	Students will be able to write electron configurations for elements including orbital box diagrams and shorthand notation by taking
	notes, watching videos, and doing an activity.
	http://betterlesson.com/lesson/619482/electron-configuration-part-ii
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS1.A: Structure and Properties of Matter
	Each atom has a charged substructure consisting of a nucleus, which is made of protons and neutrons, surrounded by electrons.
	The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar
	chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states.
	Periodic Table Scavenger Hunt
	Students are using the periodic table to determine the number of particles in atoms, as well as the type of element represented.
Elaboration	http://betterlesson.com/lesson/629268/periodic-table-scavenger-hunt
Extension Activity	Virtual Investigation
	http://www.mhhe.com/biosci/genbio/virtual_labs/periodic_table/main.html
	Graphing Periodic Trends

Cliffside Park Public Schools

GRADE: 9-12

	Using the data from this interactive website, students will use Google Sheets or Excel to create graphs showing the periodic trends of Atomic Radii,Ionization Energy, Electronegativity and Electron Affinity vs atomic number using data from the following website.	
	Students can construct explanations for the graphs showing the periodic trends. http://www.ptable.com/#Property/State	
Evaluation		Assessn
Assessment Tasks		<u>Reflecti</u>

BOE APPROVAL: August 2016

Cliffside Park Public Schools

	CHEMISTRY	
HS-PS1-2 Matter and its Interactions		
	e outcome of a simple chemical reaction based on the out	ermost electron states of atoms, trends in
the periodic table, and knowledge of the patterns of		
	ns could include the reaction of sodium and chlorine, of ca	rbon and oxygen, or of carbon and hydrogen
•	ical reactions involving main group elements and combusti	
Evidence Statements: HS-PS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	PS1.A: Structure and Properties of Matter	Patterns
Constructing explanations and designing solutions in	The periodic table orders elements horizontally by the	Different patterns may be observed at each
9–12 builds on K–8 experiences and progresses to	number of protons in the atom's nucleus and places those	of the scales at which a system is studied
explanations and designs that are supported by	with similar chemical properties in columns. The	and can provide evidence for causality in
multiple and independent student-generated sources	repeating patterns of this table reflect patterns of outer	explanations of phenomena.
of evidence consistent with scientific ideas, principles	electron states.	
and theories.	PS1.B: Chemical Reactions	
Construct and revise an explanation based on valid	The fact that atoms are conserved, together with	
and reliable evidence obtained from a variety of	knowledge of the chemical properties of the elements	
sources (including students' own investigations,	involved, can be used to describe and predict chemical	
models, theories, simulations, peer review) and the	reactions.	
assumption that theories and laws that describe the		
natural world operate today as they did in the past		
and will continue to do so in the future.		
Connections to other DCIs in this grade-band: HS.LS1	.C ; HS.ESS2.C	
Articulation of DCIs across grade-bands: MS.PS1.A ; I	MS.PS1.B	
NJSLS- ELA: WHST.9-12.2, WHST.9-12.5		
NJSLS- Math: HSN-Q.A.1, HSN-Q.A.3		
	5E Model	
	e outcome of a simple chemical reaction based on the out	ermost electron states of atoms, trends in
the periodic table, and knowledge of the patterns of		
How Elements Form Compou		
	g how sodium reacts with chlorine to form salt. It is accom	panied by discussion questions for
Anticipatory Set engagement		
http://nj.pbslearningmedia.o	rg/resource/nvhe.sci.chemistry.compounds/how-elements-	-form-compounds/

Cliffside Park Public Schools

GRADE: 9-12

-		٦ L
	What Makes an Element Reactive?	
	This video demonstrates how electron configuration affects the reactivity of an element. It is accompanied by discussion questions	
	for engagement.	
	http://nj.pbslearningmedia.org/resource/nvhe.sci.chemistry.reactive/what-makes-an-element-reactive/	/
	Gummy Bear Experiment	/
	The following video provides a demonstration of a spontaneous exothermic reaction will take place between a gummy bear and	/
	molten potassium chlorate. This demonstration can either be viewed or fully executed in the classroom.	/
	https://www.youtube.com/watch?v=7Xu2YZzufTM	ut roadi
		<u>#Trendi</u>
		In this line
		includir
		<u>http://t</u> Periodio
		In this a
		perforn
		https://
		Types o
Exploration		During
Student Inquiry		numbei
,		reactan
		decom
		http://
		Types o
		http://t
		http://be
		http://be
		Corrosi
		In this l
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
l+vnlanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Concents and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	PS1.A: Structure and Properties of Matter	
	The periodic table orders elements horizontally by the number of protons in the atom's nucleus and places those with similar	
	chemical properties in columns. The repeating patterns of this table reflect patterns of outer electron states.	

GRADE: 9-12

	PS1.B: Chemical Reactions
	The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to
	describe and predict chemical reactions.
Elaboration	The Signs of Chemical Reactions Lab
Extension Activity	http://alki.vansd.org/dgray/Assignments/Chemical%20Reactions/Evidence%20of%20Chemical%20Reactions%20Lab.doc.
Evaluation	Assessment Task: Trends of the Periodic Table
Assessment Tasks	https://betterlesson.com/lesson/resource/3131431/periodic-trends-ws?from=lessonsection_narrative

BOE APPROVAL: August 2016

Cliffside Park Public Schools

HS-PS1-3 Matter and	its Interactions	CHEMISTRY	
		nce to compare the structure of substances at the	bulk scale to infer the strength of electrical
forces between partie	· · ·	ice to compare the structure of substances at the	
		rengths of forces between particles, not on namin	a specific intermolecular forces (such as
		is, molecules, and networked materials (such as gr	
	ude the melting point and boiling point,	· · · · · ·	apinte). Examples of built properties of
	y: Assessment does not include Raoult's		
Evidence Statements:	-		
	e & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying	g Out Investigations	PS1.A: Structure and Properties of Matter	Patterns
Planning and carrying	out investigations in 9-12 builds on K-8	The structure and interactions of matter at the	Different patterns may be observed at each
experiences and prog	resses to include investigations that	bulk scale are determined by electrical forces	of the scales at which a system is studied
provide evidence for a	and test conceptual, mathematical,	within and between atoms.	and can provide evidence for causality in
physical, and empirica	al models.		explanations of phenomena.
Plan and conduct an i	nvestigation individually and		
collaboratively to pro-	duce data to serve as the basis for		
evidence, and in the c	design: decide on types, how much, and		
accuracy of data need	ded to produce reliable measurements		
and consider limitatio	ons on the precision of the data (e.g.,		
number of trials, cost	<u>, risk, time), and refine the design</u>		
accordingly.			
	DCIs in this grade-band: MS.LS2.A ; MS		
Articulation of DCIs a	cross grade-bands: HS.PS1.A ; HS.LS2.A	; HS.LS4.D ; HS.ESS3.A	
NJSLS- ELA: RST.6-8.1	., WHST.6-8.8		
NJSLS- Math: N/A			
		5E Model	
	· · ·	nce to compare the structure of substances at the	bulk scale to infer the strength of electrical
forces between parti	<u>cles.</u>		
	Properties of Ionic and Covalent Su		
Engage		e certain physical properties of three compounds	to try to determine if they are ionic or
Anticipatory Set	covalent, and if they are covalent if		
	http://www.myips.org/cms/lib8/IN	01906626/Centricity/Domain/8123/Properties_of	f_lonic_and_Covalent_Substances_Lab.pdf

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016 Introduction to Bonding In this multi-day lab, students will be able to differences in physical characteristics for sub

Exploration Student Inquiry	In this multi-day lab, students will be able to use electronegativity values to decide if a bond is ionic or molecular, and describe differences in physical characteristics for substances with each type of bond. Includes Ionic vs. Molecular Properties Lab. <u>http://betterlesson.com/lesson/633250/introduction-to-bonding</u> <u>Boiling Point Lab</u> In this lab, students will determine what happens to the properties of liquids as they reach the boiling point. <u>http://www.chsd.us/~tthompson/assignments/trimester3/Physical%20Science/boiling%20point%20lab.pdf</u>
Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS1.A: Structure and Properties of Matter The structure and interactions of matter at the bulk scale are determined by electrical forces within and between atoms.
Elaboration Extension Activity	Candy Compounds http://schoolwires.henry.k12.ga.us/cms/lib08/GA01000549/Centricity/Domain/7044/Chem%20Candy%20Lab.pdf
Evaluation Assessment Tasks	Assessment Task A: Lab Reflection After conducting the investigation, students will reflect on the accuracy and precision of data, as well as limitations of the investigations and make suggestions for refinement.

CHEMISTRY		
HS-PS2-6 Motion and Stability: Forces and Interactions		
HS-PS2-6: Communicate scientific and technical information of the science of the	ation about why the molecular-level structu	are is important in the functioning of designed
materials.		
Clarification Statement: Emphasis is on the attractive ar	•	•
electrically conductive materials are often made of meta	I, flexible but durable materials are made up	o of long chained molecules, and pharmaceuticals are
designed to interact with specific receptors.		
Assessment Boundary: Assessment is limited to provide	d molecular structures of specific designed r	naterials.
Evidence Statements: HS-PS2-6		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Obtaining, Evaluating, and Communicating Information		Structure and Function
Obtaining, evaluating, and communicating information	Attraction and repulsion between electric	Investigating or designing new systems or structures
in 9–12 builds on K–8 and progresses to evaluating the	charges at the atomic scale explain the	requires a detailed examination of the properties of
validity and reliability of the claims, methods, and	structure, properties, and transformations	different materials, the structures of different
designs.	of matter, as well as the contact forces	components, and connections of components to reveal
Communicate scientific and technical information (e.g.	between material objects.	its function and/or solve a problem.
about the process of development and the design and		
performance of a proposed process or system) in		
multiple formats (including orally, graphically, textually,		
and mathematically).		
Connections to other DCIs in this grade-band: N/A		
Articulation of DCIs across grade-bands: MS.PS2.B		
NJSLS- ELA: RST.11-12.1, WHST.11-12.2		
NJSLS- Math: HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3		
	5E Model	
HS-PS2-6: Communicate scientific and technical information of the scientific and technical information of the science of the s	ation about why the molecular-level structu	are is important in the functioning of designed
materials.	-	
Engage Atomic Structure of an Alloy	Atomic Structure of an Alloy	
Anticipatory Set In this video excerpt from NO	In this video excerpt from NOVA: "Hunting the Elements," New York Times technology columnist David Pogue visits The Verdin	
Company, a manufacturer of b	ells, to learn about bronze. Find out how co	pper is typically alloyed with tin to make bronze—a
metal alloy widely used in too	s and weapons during the Bronze Age and s	till in use today. Learn how to make a bell and why
bronze is still the manufacture	r's material of choice. Explore how the atom	nic structure of a metal determines its properties, such as

GRADE: 9-12

http://nj.pbslearningmedia.org/resource/nvhe.sci.chemistry.alloy/atomic-structure-of-an-alloy/ Article- Graphene: The Next Wonder Material?	
/graphene.html	
What Makes a Good Conductor?	
PowerPoint® from one Ip students	
and material	
<u>01.xml</u>	
mations of	
macroscopic	

Unit 2: Overview

Unit 2: The Chemistry of Abiotic Systems & Energy of Chemical Systems

Content Area: Chemistry

Pacing: 30 Instructional Days

Essential Question

Why are we so lucky that water has the physical properties that it does? How do ancient carbon atoms drive economic decisions in the modern world?

Student Learning Objectives (Performance Expectations)

HS-PS3-4: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). HS-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes. HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

Unit Summary

In this unit of study, students develop and use models, plan and carry out investigations, analyze and interpret data, and engage in argument from evidence to make sense of energy as a quantitative property of a system—a property that depends on the motion and interactions of matter and radiation within that system. They will also use the findings of investigations to provide a mechanistic explanation for the core idea that total change of energy in any system is always equal to the total energy transferred into or out of the system. Additionally, students develop an understanding that energy, at both the macroscopic and the atomic scales, can be accounted for as motions of particles or as energy associated with the configurations (relative positions) of particles. Students apply their understanding of energy to explain the role that water plays in affecting weather. Students examine the ways that human activities cause feedback that create changes to other systems. Students are expected to demonstrate proficiency in developing and using models, planning and carrying out investigations, analyzing and interpreting data, engaging in argument from evidence, and using these practices to demonstrate understanding of core ideas. Students also develop possible solutions for major global problems. They begin by breaking these problems into smaller problems that can be tackled with engineering methods. To evaluate potential solutions, students are expected not only to consider a wide range of criteria, but also to recognize that criteria need to be prioritized.

Technical Terms

Chemical reaction, electron states of atom, sodium, chlorine, carbon, oxygen, hydrogen, elements, protons,electronegativity, ionization energy, atomic size, Law of Conservation of Matter, Five General Types of Reaction (combination, decombination, combustion, single replacement, , displacement, double replacement, ionic)

Formative Assessment Measures

Part A: Does thermal energy always transfer or transform in predictable ways? Students who understand the concepts are able to:

BOE APPROVAL: August 2016

Plan and conduct an investigation individually or collaboratively to produce data on transfer of thermal energy in a closed system that can serve as a basis for evidence of uniform energy distribution among components of a system when two components of different temperatures are combined.

Use models to describe a system and define its boundaries, initial conditions, inputs, and outputs.

Design an investigation to produce data on transfer of thermal energy in a closed system that can serve as a basis for evidence of uniform energy distribution among components of a system when two components of different temperatures are combined, considering types, how much, and the accuracy of data needed to produce reliable measurements.

Consider the limitations of the precision of the data collected and refine the design accordingly

Part B: What makes water's properties essential to life on our planet? or Why do we look for water on other planets? or What makes water so special?

Students who understand the concepts are able to:

Plan and conduct an investigation individually and collaboratively of the properties of water and its effects on Earth materials and surface processes. Use models to describe a hydrological system and define its boundaries, initial conditions, inputs, and outputs.

Design an investigation considering the types, how much, and accuracy of data needed to produce reliable measurements.

Consider the limitations on the precision of the data collected and refine the design accordingly.

Part C: What is the best energy source for a home? How would I meet the energy needs of the house of the future?

Students who understand the concepts are able to:

Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost benefit ratios, scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, and ethical considerations). Use models to evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost–benefit ratios, scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, and ethical considerations, scientific ideas and principles, empirical evidence, and logical arguments regarding relevant factors (e.g., economic, societal, environmental, and ethical considerations).

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
RST.11-12.1 Cite specific textual evidence to support analysis of science and	MP.2 Reason abstractly and quantitatively. (HS-PS3-4),(HS-ESS3-2),(HS-ETS1-3)	
technical texts, attending to important distinctions the author makes and to	MP.4 Model with mathematics. (HS-PS3-4), (HS-ETS1-3)	
any gaps or inconsistencies in the account. (HS-PS3-4),(HS-ESS3-2)		
RST.11-12.7 Integrate and evaluate multiple sources of information		
presented in diverse formats and media (e.g., quantitative data, video,		
multimedia) in order to address a question or solve a problem. (HS-ETS1-3)		
RST.11-12.8 Evaluate the hypotheses, data, analysis, and conclusions in a		
science or technical text, verifying the data when possible and		
corroborating or challenging conclusions with other sources of information.		
(HS-ESS3-2),(HS-PS3-4),(HS-ETS1-3)		
RST.11-12.9 Synthesize information from a range of sources (e.g., texts,		
experiments, simulations) into a coherent understanding of a process,		
phenomenon, or concept, resolving conflicting information when possible.		

GRADE: 9-12

(HS-ETS1-3)			
WHST.9-12.7 Conduct short as well as more sustained research projects to			
answer a question (including a self-generated question) or solve a problem;			
narrow or broaden the inquiry whe	n appropriate; synthesize multiple		
sources on the subject, demonstrat	ting understanding of the subject under		
investigation. (HS-PS3-4), (HSESS2-	5)		
WHST.11-12.8 Gather relevant info	rmation from multiple authoritative		
print and digital sources, using adv	anced searches effectively; assess the		
strengths and limitations of each so	ource in terms of the specific task,		
purpose, and audience; integrate in	nformation into the text selectively to		
	g plagiarism and overreliance on any one		
source and following a standard for			
WHST.9-12.9 Draw evidence from i	nformational texts to support analysis,		
reflection, and research. (HS-PS3-4)			
Core Instructional Materials	ore Instructional Materials Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CR		', CRP 8 , CRP 9, CRP 11, CRP 12	
Technology Standards 8.1.12.A.2,8.1.12.A.4,8.1.12.A.5, 8.1.12.C.1, 8.1.12.A.5, 8.1.12.C.1, 8.1.12.		C.1, 8.1.12.D.1, 8.1.12.E.1	
	Mo	difications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share Answer masking			Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

CHEMISTRY

HS-PS3-4 Energy

HS-PS3-4: Plan and conduct an investigation to provide evidence that the transfer of thermal energy when two components of different temperature are combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics). Clarification Statement: Emphasis is on analyzing data from student investigations and using mathematical thinking to describe the energy changes both

quantitatively and conceptually. Examples of investigations could include mixing liquids at different initial temperatures or adding objects at different temperatures to water.

Assessment Boundary: Assessment is limited to investigations based on materials and tools provided to students.

Evidence Statements: HS-PS3-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS3.B: Conservation of Energy and Energy Transfer	Systems and System Models
Planning and carrying out investigations to answer	<u>Energy cannot be created or destroyed, but it can be</u>	When investigating or describing a
uestions or test solutions to problems in 9-12 builds on	transported from one place to another and transferred	system, the boundaries and initial
<u>–8 experiences and progresses to include investigations</u>	<u>between systems.</u>	conditions of the system need to be
hat provide evidence for and test conceptual,	Uncontrolled systems always evolve toward more stable	defined and their inputs and outputs
nathematical, physical, and empirical models.	states—that is, toward more uniform energy distribution	analyzed and described using models.
lan and conduct an investigation individually and	(e.g., water flows downhill, objects hotter than their	
ollaboratively to produce data to serve as the basis for	<u>surrounding environment cool down).</u>	
vidence, and in the design: decide on types, how much,	PS3.D: Energy in Chemical Processes	
nd accuracy of data needed to produce reliable	<u>Although energy cannot be destroyed, it can be</u>	
neasurements and consider limitations on the precision	converted to less useful forms—for example, to thermal	
f the data (e.g., number of trials, cost, risk, time), and	energy in the surrounding environment.	
efine the design accordingly.		
Connections to other DCIs in this grade-band: HS.ESS2.A		
Articulation of DCIs across grade-bands: MS.PS3.B		
NJSLS- ELA: RST.11-12.1, WHST.9-12.7, WHST.11-12.8		
NJSLS- Math: MP.2, MP.4		
5E Model		
IS-PS3-4: Plan and conduct an investigation to provide e	vidence that the transfer of thermal energy when two co	omponents of different temperature a

combined within a closed system results in a more uniform energy distribution among the components in the system (second law of thermodynamics).

Cliffside Park Public Schools

GRADE: 9-12

	Conduction. The Effect of Wall Thickness on Uset Conduction	
Engage	Conduction: The Effect of Wall Thickness on Heat Conduction	
Anticipatory Set	Using this interactive model, students will compare the flow of heat through materials of differing thicknesses.	
	https://concord.org/stem-resources/conduction-effect-wall-thickness-heat-conduction	
	Hands on Activity: To Heat or Not to Heat	
	https://www.teachengineering.org/view_activity.php?url=collection/wsu_/activities/wsu_heat_activity/wsu_heat_activity.xml	
	Energy Forms and Changes	
	https://phet.colorado.edu/en/simulation/legacy/energy-forms-and-changes	
	In this online simulation, students will explore how heating and cooling iron, brick, and water adds or removes energy. They will see	
Exploration	how energy is transferred between objects, build their own system with energy sources, changers, and users and track and	
Student Inquiry	visualize how energy flows and changes through your system.	
	Heat, Temperature and Calorimetry	
	In this lesson, students will differentiate between heat energy and temperature and apply this knowledge to calorimetry.	
	http://betterlesson.com/lesson/640677/heat-temperature-and-calorimetry	
	<u>Calorimetry Lab</u>	
	In this lesson, students will track energy changes in an open calorimeter when mixing water of different temperatures.	
	http://betterlesson.com/lesson/640678/calorimetry-lab	
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	PS3.B: Conservation of Energy and Energy Transfer	
Explanation	Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems.	
Concepts and Practices	Uncontrolled systems always evolve toward more stable states—that is, toward more uniform energy distribution (e.g., water flows	
	downhill, objects hotter than their surrounding environment cool down).	
	PS3.D: Energy in Chemical Processes	
	Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding	
	environment.	
	Soda Can Calorimeter	
	This activity will introduce the concept of calorimetry and investigate the caloric content of snack foods	
Elaboration	https://www.flinnsci.com/media/510570/soda_can.pdf	
Extension Activity	Additional Activities	
	http://www.ck12.org/ngss/high-school-physical-sciences/energy	
Evaluation	Assessment Task A: Throughout the exploration activities, teachers should assess students' planning of their investigations.	
Assessment Tasks	Assessment Task B: Calorimetry Lab: Analysis Questions	
13363311611610383		

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY			
HS-ESS2-5 Earth's Systems	HS-ESS2-5 Earth's Systems		
HS-ESS2-5: Plan and conduct an investigation of the properties of water and its effects on Earth materials and surface processes.			
Clarification Statement: Emphasis is on mechanical an	d chemical investigations with water and a variety of s	olid materials to provide the evidence for	
connections between the hydrologic cycle and system	interactions commonly known as the rock cycle. Examp	ples of mechanical investigations include stream	
transportation and deposition using a stream table, er	osion using variations in soil moisture content, or frost	wedging by the expansion of water as it	
freezes. Examples of chemical investigations include ch	nemical weathering and recrystallization (by testing the	e solubility of different materials) or melt	
generation (by examining how water lowers the meltir	ng temperature of most solids.		
Assessment Boundary: N/A			
Clarification Statement: Emphasis is on mechanical and	<u>d chemical investigations with water and a variety of sc</u>	blid materials to provide the evidence for	
connections between the hydrologic cycle and system	interactions commonly known as the rock cycle. Examp	ples of mechanical investigations include stream	
	osion using variations in soil moisture content, or frost		
	nemical weathering and recrystallization (by testing the	e solubility of different materials) or melt	
generation (by examining how water lowers the meltir	ng temperature of most solids.		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
		Structure and Function	
Planning and carrying out investigations in 9-12 builds		The functions and properties of natural and	
on K-8 experiences and progresses to include		designed objects and systems can be inferred	
investigations that provide evidence for and test		from their overall structure, the way their	
conceptual, mathematical, physical, and empirical	properties are central to the planet's dynamics. These		
models.	properties include water's exceptional capacity to	molecular substructures of its various	
Plan and conduct an investigation individually and		materials.	
collaboratively to produce data to serve as the basis	transmit sunlight, expand upon freezing, dissolve and		
for evidence, and in the design: decide on types, how	transport materials, and lower the viscosities and		
much, and accuracy of data needed to produce	melting points of rocks.		
reliable measurements and consider limitations on			
the precision of the data (e.g., number of trials, cost,			
risk, time), and refine the design accordingly.			
Connections to other DCIs in this grade-band: HS.PS1.A ; HS.PS1.B ; HS.PS3.B ; HS.ESS3.C			

Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS4.B ; MS.ESS2.A ; MS.ESS2.C ; MS.ESS2.D

NJSLS- ELA: WHST.9-12.	7
NJSLS- Math: HSN.Q.A.3	
	5E Model
HS-ESS2-5: Plan and cor	nduct an investigation of the properties of water and its effects on Earth materials and surface processes.
Engage Anticipatory Set	Ausable Chasm, NY: Flood Video Students will be asked to watch a video on the flooding of the Ausable Chasm and investigate how water played a role in its formation. <u>https://www.youtube.com/watch?v=XpdlNhRNNIY</u> <u>Largest Crystals in the World: Giant Crystal Cave, Mexico</u> Students will be shown pictures of the Giant Crystal Caves in Mexico and will be asked to develop a theory as to how these caves formed. How did water cause crystals to form? Where did the material to form these crystals come from? How might the flooding of these caves endanger the existence of these crystals?
	If you entered the caves what do you predict the environment would be like? What would you experience inside the cave? http://www.tourismontheedge.com/get-extreme/largest-crystals-in-the-world-giant-crystal-cave-mexico
Exploration Student Inquiry	<u>Making a Cave</u> This activity simulates the way that dissolution, a chemical weathering process, leads to the formation of caves. <u>http://www.earthsciweek.org/classroom-activities/making-cave</u> <u>Streamflow Lab</u> <u>https://skyschool.arizona.edu/skyschoolwiki/index.php?title=Streamflow_lesson_plan</u>
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): ESS2.C: The Roles of Water in Earth's Surface Processes The abundance of liquid water on Earth's surface and its unique combination of physical and chemical properties are central to the planet's dynamics. These properties include water's exceptional capacity to absorb, store, and release large amounts of energy,
Elaboration Extension Activity	transmit sunlight, expand upon freezing, dissolve and transport materials, and lower the viscosities and melting points of rocks. Landforms from Stream Erosion and Deposition The following site provides reading materials, videos and study guides on this topic. http://www.ck12.org/earth-science/Landforms-from-Stream-Erosion-and-Deposition/?by=ck12&difficulty=all#text
Evaluation Assessment Tasks	Assessment Task A: Throughout the exploration activities, Making a Cave and Streamflow Lab, teachers should assess students' planning of their investigations. Assessment Task B: Landforms from Erosion and Deposition Study Guide

Cliffside Park Public Schools

GRADE: 9-12

Concept Check Questions:
http://www.ck12.org/earth-science/Landforms-from-Stream-Erosion-and-Deposition/studyguide/Landforms-from-Erosion-and-Dep
osition-Study-Guide/?referrer=concept_details
Compare the effects of different types of erosion.
Why does erosion occur and how does it affect humans?
How are landforms formed by different types of erosion?

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

CHEMISTRY HS-ESS3-2 Earth and Human Activity HS-ESS3-2: Evaluate competing design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios. Clarification Statement: Emphasis is on the conservation, recycling, and reuse of resources (such as minerals and metals) where possible, and on minimizing impacts where it is not. Examples include developing best practices for agricultural soil use, mining (for coal, tar sands, and oil shales), and pumping (for petroleum and natural gas). Science knowledge indicates what can happen in natural systems—not what should happen. Assessment Boundary: N/A A4=HYPERLINK("http://www.nextgenscience.org/sites/ngss/files/HS-ESS3-2 Evidence%20Statements%20Jan%202015.pdf","Evidence Statements: HS-ESS3-2") **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts** Engaging in Argument from Evidence ESS3.A: Natural Resources Connections to Engineering, Technology, and Applications of Engaging in argument from evidence in All forms of energy production and other resource Science 9–12 builds on K–8 experiences and extraction have associated economic. social. Influence of Science, Engineering, and Technology on Society progresses to using appropriate and environmental, and geopolitical costs and risks as and the Natural World sufficient evidence and scientific well as benefits. New technologies and social Engineers continuously modify these technological systems by reasoning to defend and critique claims regulations can change the balance of these factors. applying scientific knowledge and engineering design practices ETS1.B: Developing Possible Solutions to increase benefits while decreasing costs and risks. and explanations about natural and designed world(s). Arguments may also When evaluating solutions, it is important to take Analysis of costs and benefits is a critical aspect of decisions into account a range of constraints, including cost, come from current scientific or about technology. historical episodes in science. safety, reliability, and aesthetics, and to consider Connections to Nature of Science Evaluate competing design solutions to social, cultural, and environmental impacts. Science Addresses Questions About the Natural and Material a real-world problem based on (secondary) World scientific ideas and principles, empirical Science and technology may raise ethical issues for which evidence, and logical arguments science, by itself, does not provide answers and solutions. regarding relevant factors (e.g. Science knowledge indicates what can happen in natural systems—not what should happen. The latter involves ethics, economic, societal, environmental, values, and human decisions about the use of knowledge. ethical considerations). Many decisions are not made using science alone, but rely on social and cultural contexts to resolve issues. Connections to other DCIs in this grade-band: HS.PS3.B ; HS.PS3.D ; HS.LS2.A ; HS.LS2.B ; HS.LS4.D ; HS.ESS2.A Articulation of DCIs across grade-bands: MS.PS3.D ; MS.LS2.A ; MS.LS2.B ; MS.LS4.D ; MS.ESS3.A ; MS.ESS3.C NJSLS- ELA: RST.11-12.1, RST.11-12.8

Cliffside Park Public Schools

BOE APPROVAL: August 2016

NJSLS- Math: MP.2			
	5E Model		
HS-ESS3-2: Evaluate cor	npeting design solutions for developing, managing, and utilizing energy and mineral resources based on cost-benefit ratios.		
	One Fracking Minute		
Engage	This animation provides an overview of hydraulic fracturing		
Anticipatory Set	http://www.marketplace.org/2012/12/07/sustainability/crude-economy/one-fracking-minute-animated-explainer-hydraulic-fractur		
	ing		
	Comparing Energy Resources: Pros and Cons		
Exploration	Students will be able to compare the pros and cons of various energy resources and determine which resource is the best option to		
Student Inquiry	both meet our future energy needs and minimize our environmental impact.		
	http://betterlesson.com/lesson/640507/comparing-energy-resources-pros-and-cons		
	In these lessons		
Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	ESS3.A: Natural Resources		
Concepts and Practices	All forms of energy production and other resource extraction have associated economic, social, environmental, and geopolitical		
	costs and risks as well as benefits. New technologies and social regulations can change the balance of these factors.		
	ETS1.B: Developing Possible Solutions		
	When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and		
	aesthetics, and to consider social, cultural, and environmental impacts. (secondary)		
Elaboration	Earth, Science Week- Additional Activities		
Extension Activity	http://www.earthsciweek.org/classroom-activities/ngss		
	Assessment Task A: Comparing Energy Resources: Pros and Cons- Writing Component		
Evaluation	Which Energy Resource is Best?		
Assessment Tasks	Consider the pros and cons of each energy resource. Which resource(s) do you think societies should use to meet their future		
	energy needs?		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY		
HS-ETS1-3 Engineering Design		
HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints,		
including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.		
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and
Constructing explanations and designing solutions in	When evaluating solutions, it is important	Applications of Science
9–12 builds on K–8 experiences and progresses to	_	Influence of Science, Engineering, and Technology on
explanations and designs that are supported by multiple		Society and the Natural World
and independent student-generated sources of		New technologies can have deep impacts on society and
		the environment, including some that were not
<u>theories.</u>		anticipated. Analysis of costs and benefits is a critical
Evaluate a solution to a complex real-world problem,		aspect of decisions about technology.
based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff		
considerations.		
Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6		
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B		
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9		
NJSLS- Math: MP.2, MP.4		

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Unit 3: Overview **Unit 3: Bonding and Chemical Reactions** Content Area: Chemistry Pacing: 30 Instructional Days **Essential Question** How can one explain the structure, properties, and interactions of matter? Student Learning Objectives (Performance Expectations) HS-PS1-7: Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction. HS-PS1-4: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy. HS-PS1-5: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs. HS-PS1-6: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium. HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engi<u>neering.</u> **Unit Summarv** In this unit of study, students develop and using models, plan and conduct investigations, use mathematical thinking, and construct explanations and design solutions as they develop an understanding of the substructure of atoms and to provide more mechanistic explanations of the properties of substances. Chemical reactions, including rates of reactions and energy changes, can be understood by students at this level in terms of the collisions of molecules and the rearrangements of atoms. Students also apply an understanding of the process of optimization and engineering design to chemical reaction systems. The crosscutting concepts of patterns, energy and matter, and stability and change are the organizing concepts for these disciplinary core ideas. Students are expected to demonstrate proficiency in developing and using models, planning and conducting investigations, using mathematical thinking, and constructing explanations and designing solutions. **Technical Terms** reactants, macroscopic scale, linear and nonlinear functions, trigonometric functions, exponentials, logarithms, equilibrium, particles, kinetic energy, absorption of energy, Endothermic and Exothermic Reactions, calcium carbonate, hydrochloric acid, Le Chatelier's Principle, Law of conservation of mass **Formative Assessment Measures** Part A: Where do the atoms go during a chemical reaction? Students who understand the concepts are able to: Use mathematical representations of chemical reaction systems to support the claim that atoms, and therefore mass, are conserved during a chemical

reaction.

Use mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and products and the translation of these

BOE APPROVAL: August 2016

relationships to the macroscopic scale, using the mole as the conversion from the atomic to the macroscopic scale.

Use the fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, to describe and predict chemical reactions.

Describe changes of energy and matter in a chemical reaction system in terms of energy and matter flows into, out of, and within that system.

Part B: What is different inside a heat pack and a cold pack?

Students who understand the concepts are able to:

Explain the idea that a stable molecule has less energy than the same set of atoms separated. Describe changes of energy and matter in a chemical reaction system in terms of energy and matter flows into, out of, and within that system.

Describe chemical processes, their rates, and whether or not they store or release energy in terms of the collisions of molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of molecules that are matched by changes in kinetic energy. Develop a model based on evidence to illustrate the relationship between the release or absorption of energy from a chemical reaction system and the changes in to the collisions in total bond energy.

Part C: Is it possible to change the rate of a reaction or cause two elements to react that do not normally want to?

Students who understand the concepts are able to:

Use the number and energy of collisions between molecules (particles) to explain the effects of changing the temperature or concentration of the reacting articles on the rate at which a reaction occurs.

Use patterns in the effects of changing the temperature or concentration of the reactant particles to provide evidence for causality in the rate at which a reaction occurs.

Apply scientific principles and multiple and independent student-generated sources of evidence to provide an explanation of the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

Part D: What can we do to make the products of a reaction stable?

Students who understand the concepts are able to:

Construct explanations for how chemical reaction systems change and how they remain stable.

Design a solution to specify a change in conditions that would produce increased amounts of products at equilibrium in a chemical system based on

scientific knowledge, student-generated sources of evidence, prioritized

criteria, and tradeoff considerations.

Break down and prioritize criteria for increasing amounts of products in a chemical system at equilibrium.

Refine the design of a solution to specify a change in conditions that would produce increased amounts of products at equilibrium in a chemical system based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
RST.9-10.7 Translate quantitative or technical information expressed in	MP.2 Reason abstractly and quantitatively.	
words in a text into visual form (e.g., a table or chart) and translate	(HS-PS1-5),(HS-PS1-7),(HS-ETS1-1),(HS-ETS1-3),(HS-ETS1-4)	
information expressed visually or mathematically (e.g., in an equation) into	MP.4 Model with mathematics. (HS-PS1-4),	
words. (HS-PS1-1)	(HS-ETS1-1),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)	

Cliffside Park Public Schools

GRADE: 9-12

technical texts, attending to imp any gaps or inconsistencies in the RST.11-12.7 Integrate and evalu presented in diverse formats an multimedia) in order to address (HS-ETS1-1),(HS-ETS1-3) RST.11-12.8 Evaluate the hypoth science or technical text, verifyin or challenging conclusions with (HS-ETS1-1),(HS-ETS1-3) RST.11-12.9 Synthesize informative experiments, simulations) into a phenomenon, or concept, resolv (HS-ETS1-1),(HS-ETS1-3) WHST.9-12.2 Write informative/ historical events, scientific proce (HSPS1-5) WHST.9-12.7 Conduct short as v answer a question (including a s narrow or broaden the inquiry v sources on the subject, demonst investigation. (HS-PS1-6) SL.11-12.5 Make strategic use of visual, and interactive elements of findings, reasoning, and evide Core Instructional Materials	portant distinctions the author makes and to be account. (HS-PS1-5) ate multiple sources of information d media (e.g., quantitative data, video, a question or solve a problem. meses, data, analysis, and conclusions in a ng the data when possible and corroborating	of multi-step problems; choose and choose and interpret the scale and t (HS-PS1-4),(HS-PS1-5),(HS-PS1-7),(HS HSN-Q.A.2 Define appropriate quant modeling. (HS-PS1-4),(HS-PS1-7) HSN-Q.A.3 Choose a level of accurac measurement when reporting quant	tities for the purpose of descriptive
Technology Standards	8.1.12.A.2,8.1.12.A.4,8.1.12.C.1, 8.1.12.D.1,		
Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual	Multimedia	Graphic organizers	Tiered activities

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry
Think alouds	Assistive technology	Parent communication	Collaborative teamwork
Read alouds	Notes/summaries	Modified assignments	Higher level questioning
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks
Annotation guides	Answer masking		Self-directed activities
Think-pair- share	Answer eliminator		
Visual aides	Highlighter		
Modeling	Color contrast		
Cognates			

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

CHEMISTRY

HS-PS1-7 Matter and its Interactions

HS-PS1-7: Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.

Clarification Statement: Emphasis is on using mathematical ideas to communicate the proportional relationships between masses of atoms in the reactants and the products, and the translation of these relationships to the macroscopic scale using the mole as the conversion from the atomic to the macroscopic scale. Emphasis is on assessing students' use of mathematical thinking and not on memorization and rote application of problem-solving techniques.

Assessment Boundary: Assessment does not include complex chemical reactions.

Evidence Statements:HS-PS1-7

Science & Engin	eering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Using Mathematics and Co	omputational Thinking	PS1.B: Chemical Reactions	Energy and Matter	
Mathematical and comput	ational thinking at the	<u>The fact that atoms are conserved, together with</u>	The total amount of energy and matter in closed	
9–12 level builds on K–8 ar	nd progresses to using	knowledge of the chemical properties of the elements	systems is conserved.	
algebraic thinking and ana	lysis, a range of linear and	involved, can be used to describe and predict	Connections to Nature of Science	
nonlinear functions includi	ng trigonometric	chemical reactions.	Scientific Knowledge Assumes an Order and	
functions, exponentials and	d logarithms, and		Consistency in Natural Systems	
computational tools for sta	atistical analysis to analyze,		Science assumes the universe is a vast single	
represent, and model data			system in which basic laws are consistent.	
simulations are created an	d used based on			
mathematical models of ba	the second s			
Use mathematical represe	ntations of phenomena to			
support claims.				
Connections to other DCIs	in this grade-band: HS.LS1	.C ; HS.LS2.B ; HS.PS3.B		
Articulation of DCIs across	grade-bands: MS.PS1.A ; N	MS.PS1.B ; MS.LS1.C ; MS.LS2.B ; MS.ESS2.A		
NJSLS- ELA: N/A	NJSLS- ELA: N/A			
NJSLS- Math: MP.2, HSN-C	Q.A.1, HSN-Q.A.2, HSN-Q.A.	3		
5E Model				
HS-PS1-7: Use mathematic	HS-PS1-7: Use mathematical representations to support the claim that atoms, and therefore mass, are conserved during a chemical reaction.			
	Balancing Chemical Equatio	ns - Use mathematics and visual representations to bal	ance chemical equations.	
F in and a	https://phet.colorado.edu/en/simulation/legacy/balancing-chemical-equations			
Engage	http://phet.colorado.edu/en/simulation/balancing-chemical-equations			
Anticipatory Set	Reactions and Rates - See that atoms are conserved in an equilibrium situation where there are unreacted particles.			
	https://phet.colorado.edu/en/simulation/legacy/reactions-and-rates			

GRADE: 9-12

	Reactants, Products, and Leftovers		
	https://phet.colorado.edu/en/simulation/legacy/reactants-products-and-leftovers		
	Stoichiometry Lab		
Exploration	http://misterguch.brinkster.net/MLX039.doc.		
Student Inquiry	Limiting Reactants Lab		
	http://my-ecoach.com/online/resources/3709/Stoichiometry_of_Smores_Lab1.pdf		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	PS1.B: Chemical Reactions		
Concepts and Practices	The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to		
	describe and predict chemical reactions.		
	PS1.B: Chemical Reactions		
	The fact that atoms are conserved, together with knowledge of the chemical properties of the elements involved, can be used to		
	describe and predict chemical reactions.		
	Related Worksheets		
	Limiting Reactants:		
Elaboration	http://chemwiki.ucdavis.edu/Worksheets/Worksheets%3A_General_Chemistry/Worksheet%3A_Limiting_Reagents_2		
Extension Activity	Moles:		
	http://chemwiki.ucdavis.edu/Worksheets/Worksheets%3A_General_Chemistry/Worksheet%3A_Moles		
	General Science:		
	http://chemwiki.ucdavis.edu/Worksheets/Worksheets%3A_General_Chemistry		
	Assessment Task A: Stoichiometry Lab Post Lab Questions		
Evaluation	http://misterguch.brinkster.net/MLX039.doc.		
Assessment Tasks	Assessment Task B: Limiting Reactants Lab Analysis Questions		
	http://my-ecoach.com/online/resources/3709/Stoichiometry_of_Smores_Lab1.pdf		

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY

HS-PS1-4 Matter and its Interactions

HS-PS1-4: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond energy.

Clarification Statement: Emphasis is on the idea that a chemical reaction is a system that affects the energy change. Examples of models could include molecular-level drawings and diagrams of reactions, graphs showing the relative energies of reactants and products, and representations showing energy is conserved.

Assessment Boundary: Assessment does not include calculating the total bond energy changes during a chemical reaction from the bond energies of reactants and products.

Evidence Statements: HS-PS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	PS1.A: Structure and Properties of Matter	Energy and Matter	
Modeling in 9–12 builds on K–8 and	A stable molecule has less energy than the same set of atoms	Changes of energy and matter in a system can	
progresses to using, synthesizing, and	separated; one must provide at least this energy in order to take the	be described in terms of energy and matter	
developing models to predict and show	molecule apart.	flows into, out of, and within that system.	
relationships among variables between	PS1.B: Chemical Reactions		
systems and their components in the natura	Chemical processes, their rates, and whether or not energy is stored		
and designed worlds.	or released can be understood in terms of the collisions of		
Develop a model based on evidence to	molecules and the rearrangements of atoms into new molecules,		
illustrate the relationships between systems			
or between components of a system.	of molecules that are matched by changes in kinetic energy.		
Connections to other DCIs in this grade-ban	d: HS.PS3.A ; HS.PS3.B ; HS.PS3.D ; HS.LS1.C		
Articulation of DCIs across grade-bands: MS	.PS1.A ; MS.PS1.B ; MS.PS2.B ; MS.PS3.D ; MS.LS1.C		
NJSLS- ELA: SL.11-12.5			
NJSLS- Math: MP.4, HSN-Q.A.1, HSN-Q.A.2,	HSN-Q.A.3		
5E Model			
HS-PS1-4: Develop a model to illustrate that the release or absorption of energy from a chemical reaction system depends upon the changes in total bond			
<u>energy.</u>			
Energy Forms and Ch	anges_		
Engage <u>http://phet.colorado</u>	.edu/en/simulation/energy-forms-and-changes		
Anticipatory Set Enthalpy: Crash Cour	<u>se</u>		
https://www.youtub	e.com/watch?v=SV7U4yAXL5I		

Cliffside Park Public Schools

GRADE: 9-12

	Endothermic and Exothermic Reaction Lab		
	http://www.sciencegeek.net/Chemistry/chempdfs/EndoExo.pdf		
	Endothermic and Exothermic Reaction Lab/Graphing Activity		
Exploration	http://www.myips.org/cms/lib8/IN01906626/Centricity/Domain/8123/General%20Chemistry%20Unit%205%20Energetics_Jan%202010.		
Student Inquiry	<u>pdf</u>		
	Endothermic and Exothermic Reaction Lab		
	http://extension.uga.edu/k12/science-behind-our-food/lesson-plans/endothermicexothermicreactions.pdf		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Fundamentian	PS1.A: Structure and Properties of Matter		
Explanation	A stable molecule has less energy than the same set of atoms separated; one must provide at least this energy in order to take the		
Concepts and Practices	molecule apart.		
	PS1.B: Chemical Reactions		
	Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of		
	molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set of		
	molecules that are matched by changes in kinetic energy.		
	Reversible Reactions		
Elaboration	https://phet.colorado.edu/en/simulation/reversible-reactions		
Extension Activity	Endothermic and Exothermic Reactions		
	http://www.cfep.uci.edu/cspi/docs/lessons_secondary/Endo%20vs%20Exo%20Lab.pdf		
Evaluation	Assessment Task A: Student models can include molecular level drawings and diagrams of reactions, graphs showing the relative energies		
Assessment Tasks	of reactants and products and representations showing energy is conserved. Exploration activities above include these various models.		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

CHEMISTRY

HS-PS1-5 Matter and its Interactions

HS-PS1-5: Apply scientific principles and evidence to provide an explanation about the effects of changing the temperature or concentration of the reacting particles on the rate at which a reaction occurs.

Clarification Statement: Emphasis is on student reasoning that focuses on the number and energy of collisions between molecules.

Assessment Boundary: Assessment is limited to simple reactions in which there are only two reactants; evidence from temperature, concentration, and rate data; and qualitative relationships between rate and temperature.

Evidence Statements: HS-PS1-5

Science & Engineering Practices		Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and D	esigning Solutions	PS1.B: Chemical Reactions	Patterns	
Constructing explanations and de	esigning solutions in	Chemical processes, their rates, and whether or not	Different patterns may be observed at each of	
9–12 builds on K–8 experiences a	and progresses to	energy is stored or released can be understood in	the scales at which a system is studied and can	
explanations and designs that are	e supported by	terms of the collisions of molecules and the	provide evidence for causality in explanations of	
multiple and independent studer	nt-generated sources	rearrangements of atoms into new molecules, with	<u>phenomena.</u>	
of evidence consistent with scien	tific ideas, principles,	consequent changes in the sum of all bond energies in		
and theories.		the set of molecules that are matched by changes in		
Apply scientific principles and evi	idence to provide an	<u>kinetic energy.</u>		
explanation of phenomena and s	olve design problems			
taking into account possible unar	nticipated effects.			
Connections to other DCIs in this	s grade-band: HS.PS3	Α		
Articulation of DCIs across grade	-bands: MS.PS1.A ; N	IS.PS1.B ; MS.PS2.B ; MS.PS3.A ; MS.PS3.B		
NJSLS- ELA: RST.11-12.1, WHST.9	9-12.2			
NJSLS- Math: MP.2, HSN-Q.A.1,	HSN-Q.A.3			
		5E Model		
HS-PS1-5: Apply scientific princip	ples and evidence to	provide an explanation about the effects of changing th	ne temperature or concentration of the	
reacting particles on the rate at	reacting particles on the rate at which a reaction occurs.			
Rates of	Rates of Reaction: Part 2			
https://v	https://www.youtube.com/watch?v=ExHV_cFWYSM			
Engage Concent	Concentration Simulation			
Anticipatory Set https://r	https://phet.colorado.edu/sims/html/concentration/latest/concentration_en.html			
Dissolvir	Dissolving Salts in Water Simulation			
http://w	http://www.pbslearningmedia.org/resource/lsps07.sci.phys.matter.dissolvesalt/dissolving-salts-in-water/			

Cliffside Park Public Schools

GRADE: 9-12

	Reaction Rate Experimental Design
Evaloration	http://betterlesson.com/lesson/638411/reaction-rate-experimental-design?from=cc_lesson_title_
Exploration	In this lesson students will conduct a brief mini-lab to reconnect to the idea that molecules are moving. They will then work on
Student Inquiry	designing an experiment that measures the reaction rate between calcium carbonate and hydrochloric acid when either
	temperature, concentration, or surface area are manipulated.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS1.B: Chemical Reactions
	Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of
	molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set
	of molecules that are matched by changes in kinetic energy.
	Bond Energy Calculation
Elaboration	http://www.springboro.org/userfiles/722/Classes/5769/Bond%20Energy%20Practice%20Sheet%20with%20Key.pdf
Extension Activity <u>Elephant Toothpaste Lab</u>	
	http://looseinthelabscience.com/downloads/ElephantToothpaste2011.pdf
Evaluation	Assessment Task A: Rates of Reaction Lab-Discussion Questions
Assessment Tasks	https://sjesci.wikispaces.com/file/view/Rate+of+reaction.pdf

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY

HS-PS1-6 Matter and its Interactions

HS-PS1-6: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.

Clarification Statement: Emphasis is on the application of Le Chatelier's Principle and on refining designs of chemical reaction systems, including descriptions of the connection between changes made at the macroscopic level and what happens at the molecular level. Examples of designs could include different ways to increase product formation including adding reactants or removing products.

Assessment Boundary: Assessment is limited to specifying the change in only one variable at a time. Assessment does not include calculating equilibrium constants and concentrations.

Evidence Statements: HS-PS1-6

Science	& Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explan	nations and Designing Solutions	PS1.B: Chemical Reactions	Stability and Change	
Constructing explan	ations and designing solutions in	In many situations, a dynamic and	Much of science deals with constructing	
9–12 builds on K–8 e	experiences and progresses to	condition-dependent balance between a reaction	<u>explanations of how things change and how they</u>	
explanations and de	esigns that are supported by multiple	and the reverse reaction determines the numbers	remain stable.	
and independent stu	<u>udent-generated sources of</u>	of all types of molecules present.		
evidence consistent	with scientific ideas, principles, and	ETS1.C: Optimizing the Design Solution Criteria		
<u>theories.</u>		may need to be broken down into simpler ones		
	a complex real-world problem,	that can be approached systematically, and		
<u>based on scientific k</u>	knowledge, student-generated	decisions about the priority of certain criteria over		
sources of evidence	, prioritized criteria, and tradeoff	others (trade-offs) may be needed. (secondary)		
considerations.				
Connections to othe	Connections to other DCIs in this grade-band: HS.PS3.B			
Articulation of DCIs	Articulation of DCIs across grade-bands: MS.PS1.B			
NJSLS- ELA: WHST.9	NJSLS- ELA: WHST.9-12.7			
NJSLS- Math: N/A	NJSLS- Math: N/A			
	5E Model			
HS-PS1-6: Refine the	HS-PS1-6: Refine the design of a chemical system by specifying a change in conditions that would produce increased amounts of products at equilibrium.			
Engage	age Reactions & Rates			
Anticipatory Set	http://phet.colorado.edu/en/simulation/reactions-and-rates			
	Explore what makes a reaction happen by colliding atoms and molecules. Design experiments with different reactions,			
	concentrations, and temperatures. When are reactions reversible? What affects the rate of a reaction?			
	Change concentrations, energy	of reactions, temperatures, types of reactions and se	ee changing concentrations	

Cliffside Park Public Schools

Exploration	CHM152LL: Le Chatelier's Principle		
Student Inquiry	http://web.gccaz.edu/~lisys52871/LeChat.pdf		
	In this experiment you will observe shifts in equilibrium systems when conditions, such as the concentration and temperature, are		
	changed. You will explain the observed color changes of four reactions in terms of Le Chatelier's principle.		
Explanation	In these lessons		
Concepts and Practices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS1.B: Chemical Reactions		
	Chemical processes, their rates, and whether or not energy is stored or released can be understood in terms of the collisions of		
	molecules and the rearrangements of atoms into new molecules, with consequent changes in the sum of all bond energies in the set		
	of molecules that are matched by changes in kinetic energy.		
	ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached		
systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed. (secondar			
Elaboration	lodine Clock Reaction		
Extension Activity	https://www.youtube.com/watch?v=_qhYDuJt8fl		
	Student will watch the clock reaction and will then be tasked with the following activity		
	1) Create a graphical representation of the reaction observed. Make sure to account for the various products and reactants in the		
	reaction.		
	2) Modify your graphical representation to account for the change in the reaction rate over time.		
	3) Predict how the graph would be different if there were more intermediate stages for the reaction (i.e. more colors the reaction		
	could go through)		
	4) Set up individual graphs for relative concentrations of each of the products and reactants produced in the experiment. Make sure		
	your graph accounts for the Law of conservation of mass.		
Evaluation	Assessment Task A: Le Chatelier's Principle Lab-Discussion Questions & Molecular Level Drawings		
Assessment Tasks	http://web.gccaz.edu/~lisys52871/LeChat.pdf		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY

HS-ETS1-2 Engineering Design

HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Clarification Statement: N/A

Assessment Boundary: N/A

Evidence Statements: HS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution		
Constructing explanations and designing solutions in	Criteria may need to be broken down into simpler		
9–12 builds on K–8 experiences and progresses to	ones that can be approached systematically, and		
explanations and designs that are supported by	decisions about the priority of certain criteria over		
multiple and independent student-generated sources of	<u>others (trade-offs) may be needed.</u>		
evidence consistent with scientific ideas, principles and			
theories.			
Design a solution to a complex real-world problem,			
based on scientific knowledge, student-generated			
sources of evidence, prioritized criteria, and tradeoff			
considerations.			
Connections to other DCIs in this grade-band: Physical Science: HS-PS1-6, HS-PS2-3			
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C			
NJSLS- ELA: N/A			
NJSLS- Math: MP.4			

Unit 4: Overview **Unit 4: Matter and Energy in Living Systems** Content Area: Chemistry Pacing: 20 Instructional Days **Essential Question** How do organisms obtain and use the energy they need to live and grow? **Student Learning Objectives (Performance Expectations)** HS-LS1-7: Use a model to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed resulting in a net transfer of energy HS-LS1-6: Construct and revise an explanation based on evidence for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large carbon-based molecules. Unit Summarv In this unit of study, students construct explanations for the role of energy in the cycling of matter in organisms. They apply mathematical concepts to develop evidence to support explanations of the interactions of photosynthesis and cellular respiration and develop models to communicate these explanations. The crosscutting concept of matter and energy provides students with insights into the structures and processes of organisms. Students are expected to develop and use models, plan and conduct investigations, use mathematical thinking, and construct explanations and design solutions as they demonstrate proficiency with the disciplinary core ideas. **Technical Terms** cellular respiration, bonds, molecules, compounds, photosynthesis, glucose, oxygen, carbon, hydrogen, sugar molecules, organic compounds, carbohydrates, dehydration synthesis, hydrocarbon, amino acids, respiration **Formative Assessment Measures** Part A: How does photosynthesis transform light energy into stored chemical energy? Students who understand the concepts are able to: Provide a mechanistic explanation for how photosynthesis transforms light energy into stored chemical energy. Use their understanding of energy flow and conservation of energy to illustrate the inputs and outputs of matter and the transformation of energy in photosynthesis. Part B: How does cellular respiration result in a net transfer of energy? Students who understand the concepts are able to: Construct an evidence-based model, to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken and the bonds in new compounds are formed, resulting in a net transfer of energy. Use their understanding of energy flow and conservation of energy to illustrate the inputs and outputs of the process of cellular respiration. Part C: How do elements of a sugar molecule combine with other elements and what molecules are formed?

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

Students who understand the concepts are able to:

Construct and revise an explanation based on valid and reliable evidence obtained from a variety of sources (including students' own investigations, models, theories, simulations, peer review) for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large, carbon-based molecules.

Construct and revise an explanation, based on valid and reliable evidence from a variety of sources (including models, theories, simulations, peer review) and on the assumption that theories and laws that describe the natural world operate today as they did in the past and will continue to do so in the future, for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large, carbon based molecules. Use evidence from models and simulations to support explanations for how carbon, hydrogen, and oxygen from sugar molecules may combine with other elements to form amino acids and/or other large, carbon-based molecules.

Interdisciplinary Connections			
	NJSLS- ELA	NJSLS- N	Nathematics
RST.11-12.1 Cite specific textual evidence to support analysis of science and technical texts, attending to important distinctions the author makes and to any gaps or inconsistencies in the account. (HS-LS1-6) SL.11-12.5 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-LS1-4),(HS-LS1-5),(HS-LS1-7) WHST.9-12.2 Write informative/explanatory texts, including the narration of historical events, scientific procedures/ experiments, or technical processes. (HS-LS1-6) WHST.9-12.5 Develop and strengthen writing as needed by planning, revising, editing, rewriting, or trying a new approach, focusing on addressing what is most significant for a specific purpose and audience. (HS-LS1-6) WHST.9-12.9 Draw evidence from informational texts to support analysis, reflection, and research. (HS-LS1-6)			
Core Instructional Materials Can include: Textbooks Series, Lab Materials		, etc.	
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CR	P 8 , CRP 9, CRP 11, CRP 12	
Technology Standards	8.1.12.A.2,8.1.12.A.4,8.1.12.C.1, 8.1.12.D.1,	8.1.12.E.1	
	Modif	ications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames Graphic organizers		Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry

Cliffside Park Public Schools

GRADE: 9-12

Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

	CHEMISTRY	
HS-LS1-7: From Molecules to Organisms: Stru	ictures and Processes	
	lar respiration is a chemical process whereby the bonds of food molecule	es and oxygen molecules are broken
and the bonds in new compounds are formed		
	onceptual understanding of the inputs and outputs of the process of cellul	
•	nt include identification of the steps or specific processes involved in cellul	ar respiration.
Evidence Statements: HS-LS1-7		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
		Energy and Matter
Modeling in 9–12 builds on K–8 experiences	As matter and energy flow through different organizational levels of	Energy cannot be created or
		destroyed—it only moves between
		one place and another place,
• •	As a result of these chemical reactions, energy is transferred from one	between objects and/or fields, or
		<u>between systems.</u>
	chemical process in which the bonds of food molecules and oxygen	
Use a model based on evidence to illustrate	molecules are broken and new compounds are formed that can transport	
	energy to muscles. Cellular respiration also releases the energy needed	
	to maintain body temperature despite ongoing energy transfer to the	
	surrounding environment.	
Connections to other DCIs in this grade-band		
Articulation of DCIs across grade-bands: MS.	PS1.B ; MS.PS3.D ; MS.LS1.C ; MS.LS2.B	
NJSLS- ELA: SL.11-12.5		
NJSLS- Math: N/A		

HS-IS1-7. Use a model	to illustrate that cellular respiration is a chemical process whereby the bonds of food molecules and oxygen molecules are broken
	ompounds are formed resulting in a net transfer of energy
	ATP & Respiration: Crash Course Video
Anticipatory Set	https://www.youtube.com/watch?v=00jbG_cfGuQ
Anticipatory Set	How Do Organisms Use Energy?
	http://serendip.brynmawr.edu/exchange/files/how%20organisms%20use%20energy%20SHO.docx
-	Students will read through the notes/worksheet and answer questions.
Student Inquiry	Photosynthesis Chemistry Models
	http://www.ngsslifescience.com/science.php?/biology/lessonplans/C455
	The activity can be done in reverse to show how glucose and oxygen are broken down*
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	LS1.C: Organization for Matter and Energy Flow in Organisms
Concepts and Practices	As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different
concepts and matterices	ways to form different products.
	As a result of these chemical reactions, energy is transferred from one system of interacting molecules to another. Cellular
	respiration is a chemical process in which the bonds of food molecules and oxygen molecules are broken and new compounds are
	formed that can transport energy to muscles. Cellular respiration also releases the energy needed to maintain body temperature
	despite ongoing energy transfer to the surrounding environment.
	Food, Energy and Body Weight
	This analysis and discussion activity reinforces student understanding of cellular respiration and helps students to understand the
	relationships between food, energy, physical activity, and changes in body weight.
Elaboration	The first attached file has the Student Handout and the second attached file has the Teacher Notes. The Teacher Notes provide
Extension Activity	background information and instructional suggestions and explain how this activity is aligned with the Next Generation Science
-	Standards
	instructional suggestions and explain how this activity is aligned with the Next Generation Science Standards
	http://serendip.brynmawr.edu/exchange/files/FoodEnergyWtTN_0.docx
	Assessment Task A: Driving Question Response
	Response should include the relationships between these components:
Evaluation	Carbon dioxide and water are produced from sugar and oxygen by the process of cellular respiration
INCCOCCMONT LOCKC	The process of cellular respiration releases energy because the energy released when the bonds that are formed in CO2 and water is
	greater than the energy required to break the bonds of sugar and oxygen.
1	Breater than the cherby required to break the bolids of subar and oxyben.

HS-LS2-3: Ecosystems: Interactions, Energy, and Dynamics	CHEMISTRY	
HS-LS2-3: Construct and revise an explanation based on evidence for	or the cycling of matter and flow of energy	v in aerobic and anaerobic conditions
Clarification Statement: Emphasis is on conceptual understanding or		
Assessment Boundary: Assessment does not include the specific che	•	
Evidence Statements: HS-LS2-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
	LS2.B: Cycles of Matter and Energy	
Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on		Energy and Matter
K–8 experiences and progresses to explanations and designs that	Photosynthesis and cellular respiration	Energy drives the cycling of matter within and between systems.
		and between systems.
are supported by multiple and independent student-generated	(including anaerobic processes) provide	
sources of evidence consistent with scientific ideas, principles, and	most of the energy for life processes.	
theories.		
Construct and revise an explanation based on valid and reliable		
evidence obtained from a variety of sources (including students'		
own investigations, models, theories, simulations, peer review) and the assumption that theories and laws that describe the natural		
world operate today as they did in the past and will continue to do so in the future.		
Connections to Nature of Science		
Scientific Knowledge is Open to Revision in Light of New Evidence Most scientific knowledge is quite durable, but is, in principle,		
subject to change based on new evidence and/or reinterpretation of		
existing evidence.		
Connections to other DCIs in this grade-band: HS.PS1.B; HS.PS3.B;		
Articulation of DCIs across grade-bands: MS.PS1.B ; MS.PS3.D ; MS.	LS1.C ; IVIS.LS2.B	
NJSLS- ELA: RST.11-12.1, WHST.9-12.5		
NJSLS- Math: N/A		
	5E Model	

HS-LS2-3: Construct and revise an explanation based on evidence for the cycling of matter and flow of energy in aerobic and anaerobic conditions.

Cliffside Park Public Schools

Engage	Anaerobic vs Aerobic Respiration
Anticipatory Set	https://www.youtube.com/watch?v=EkjR04SHuV0
Exploration Student Inquiry	Aerobic vs. Anaerobic Respiration http://www.d.umn.edu/gk12/FellowTeacherTeams/2010-11teams/CabinRoss-JacobOjard/CellularRespiration.pdf In this lab activity, students will: Describe the basic ideas and components of the respiration process in cells. Compare and contrast aerobic and anaerobic respiration. Develop a hypothesis about how to determine when sugar is provided for respiration in making dough. Observe/measure results of the experiment (how much did the dough rise?) Analyze results to make a conclusion.
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): LS2.B: Cycles of Matter and Energy Transfer in Ecosystems Photosynthesis and cellular respiration (including anaerobic processes) provide most of the energy for life processes.
Elaboration Extension Activity	Anaerobic and Aerobic Respiration http://www.ck12.org/biology/Anaerobic-and-Aerobic-Respiration/lesson/Anaerobic-and-Aerobic-Respiration-BIO/?referrer=feature d_content
Evaluation Assessment Tasks	<u>Assessment Task: Constructed Explanation</u> Lab Response Questions: How are aerobic and anaerobic respiration the same? How are they different? Which process is more efficient at producing energy? How could we measure the efficiency of each process? Given new data or information, students revise their explanation and justify the revision

	CHEMISTRY			
HS-LS1-5: From Molecules to Organisms: Structures and Processes				
	HS-LS1-5: Use a model to illustrate how photosynthesis transforms light energy into stored chemical energy.			
		and outputs of matter and the transfer and transfor		
		els could include diagrams, chemical equations, and	conceptual models.	
	Assessment does not include spec	ific biochemical steps.		
Evidence Statements: H				
	Ingineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using N		LS1.C: Organization for Matter and Energy Flow in		
-	on K–8 experiences and	<u>Organisms</u>	Changes of energy and matter in a system can	
		The process of photosynthesis converts light energy		
	ationships among variables	to stored chemical energy by converting carbon	flows into, out of, and within that system.	
	neir components in the natural	dioxide plus water into sugars plus released oxygen.		
and designed worlds.				
Use a model based on e				
	ystems or between components			
of a system.				
	Connections to other DCIs in this grade-band: HS.PS1.B ; HS.PS3.B			
	oss grade-bands: MS.PS1.B ; MS.F	PS3.D ; MS.LS1.C ; MS.LS2.B		
NJSLS- ELA: SL.11-12.5				
NJSLS- Math: N/A				
		5E Model		
HS-LS1-5: Use a model t	to illustrate how photosynthesis t	ransforms light energy into stored chemical energy	<u>+</u>	
Engage	<u>Photosynthesis</u>			
Anticipatory Set	https://www.youtube.com/watc			
	Putting The Energy Into Photosy			
		634381/putting-the-energy-into-photosynthesis		
Exploration		n an an illustrated model to represent the chemical	equation of photosynthesis that demonstrates	
Student Inquiry	the transformation of light energy into chemical energy.			
	Shedding Light On Photosynthes			
	• • • •	633523/shedding-light-on-photosynthesis		
	In this lesson, students will desci	ibe the discoveries that promoted our understandin	g of photosynthesis, recite the equation, and	

GRADE: 9-12

	discuss the importance of the chemical reactions that occur to allow photosynthesis to occur.	
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
concepts and Practices	LS1.C: Organization for Matter and Energy Flow in Organisms	
	The process of photosynthesis converts light energy to stored chemical energy by converting carbon dioxide plus water into sugars	
	plus released oxygen.	
Elaboration	Related Activities	
Extension Activity	https://www.opened.com/search?standard=HS.LS1.5	
	Assessment Task:	
Evaluation	Students use the given model to illustrate:	
Assessment Tasks	1. The transfer of matter and flow of energy between the organism and its environment during photosynthesis	
	2. Photosynthesis as resulting in the storage of energy in the difference between the energies of the chemical bonds of the inputs	
	(carbon dioxide and water) and outputs (sugar and oxygen).	

Cliffside Park Public Schools

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

		CHEMISTRY	
	les to Organisms: Structures		
		d on evidence for how carbon, hydrogen, and oxygen from su	gar molecules may combine with other
	<u>o acids and/or other large ca</u>		
	•	nce from models and simulations to support explanations.	
		e the details of the specific chemical reactions or identification	of macromolecules.
Evidence Statements: H			
	ineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing explanatio in 9–12 builds on K–8 ex- to explanations and des multiple and independe sources of evidence con principles, and theories. Construct and revise an and reliable evidence of sources (including stude models, theories, simula assumption that theorie	ns and designing solutions speriences and progresses igns that are supported by nt student-generated sistent with scientific ideas, explanation based on valid otained from a variety of ents' own investigations, ations, peer review) and the es and laws that describe te today as they did in the	LS1.C: Organization for Matter and Energy Flow in Organisms The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to form new cells. As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different ways to form different products.	<u>Changes of energy and matter in a system</u> <u>can be described in terms of energy and</u> <u>matter flows into, out of, and within that</u> <u>system.</u>
	CIs in this grade-band: HS.PS oss grade-bands: MS.PS1.A ;	51.B MS.PS1.B ; MS.PS3.D ; MS.LS1.C ; MS.ESS2.E	
NJSLS- ELA: RST.11-12.1	, WHST.9-12.2, WHST.9-12.	5, WHST.9-12.9	
NJSLS- Math: N/A			
		5E Model	
HS-LS1-6: Construct and	revise an explanation base	<u>d on evidence for how carbon, hydrogen, and oxygen from su</u>	gar molecules may combine with other
elements to form amine	o acids and/or other large ca	arbon-based molecules.	
Engage Anticipatory Set	Organic Chemistry Primer: V https://www.youtube.com/ Teachers may select portion	/watch?v=GBfWyJeayAA	

GRADE: 9-12

	Chudente abould construct a diagram (draw and write) that addresses the substice III law daws set an events to the
	Students should construct a diagram (draw and write) that addresses the question "How do we get our energy to live, move and grow?"
	Collect evidence to support the scientific idea about the composition and flow of matter.
	Students should create a "Food Log" that contains the food they eat during the week and classified into organic compound
	categories (proteins, lipids, carbohydrates.)
	Conceptualizing Carbohydrates
	http://betterlesson.com/lesson/628470/conceptualizing-carbohydrates
Fundametian	In this lesson, students will create a model of the dehydration synthesis chemical reaction and develop a detailed narration to
Exploration	describe this process.
Student Inquiry	Show pictures of the structure of a carbohydrate, a protein, and a lipid. Ask students to identify what all of these molecules (that
	make up foods) have in common. Students should research the building blocks of each class of organic compound and could
	continue with building simple organic monomer models from glucose and oxygen models. Construct explanations for how the bonds
	and atoms are rearranged to form the carbon-based molecules. Students should include pictures of their models as evidence.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	LS1.C: Organization for Matter and Energy Flow in Organisms
Concepts and Practices	The sugar molecules thus formed contain carbon, hydrogen, and oxygen: their hydrocarbon backbones are used to make amino
	acids and other carbon-based molecules that can be assembled into larger molecules (such as proteins or DNA), used for example to
	form new cells.
	As matter and energy flow through different organizational levels of living systems, chemical elements are recombined in different
	ways to form different products.
	For a final assessment, begin by asking students probing questions to connect photosynthesis; cellular respiration; systems; and
Elaboration	matter, energy, and life. Ask students to revisit their initial diagram (from anticipatory set) and add to it pictures, words, and arrows
Extension Activity	to convey their understanding of the flow of energy and matter through a living organism. Their final diagram should include food,
Extension Activity	large molecules (protein, carbohydrates, lipids) and their components, digestion, cellular respiration, and how "food" is converted to
	energy in a living organism.
	Assessment Task A: Conceptualizing Carbohydrates- One Minute Report
	In this explanation, students should use reasoning to show:
Evaluation	The atoms in sugar molecules can provide most of the atoms that comprise amino acids and other complex carbon-based molecules.
	The energy released in respiration can be used to drive chemical reactions between sugars and other substances, and the products
Assessment Tasks	of those reactions can include amino acids and other complex carbon-based molecules.
	The matters flows in cellular processes are the results of the rearrangements of primarily the atoms in sugar molecules because
	those are the molecules whose reactions release the energy needed for cell processes.

SUBJECT: SCIENCE/CHEMISTRY BOE APPROVAL: August 2016

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

Unit 5: Overview Unit 5: Nuclear Chemistry Content Area: Chemistry Pacing: 30 Instructional Days **Essential Question** What happens in stars? Student Learning Objectives (Performance Expectations) HS-PS1-8: Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay HS-ESS1-3: Communicate scientific ideas about the way stars, over their life cycle, produce elements. HS-ESS1-1: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation. HS-ESS1-2: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe. HS-ESS1-6: Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history. **Unit Summary** In this unit of study, energy and matter are studied further by investigating the processes of nuclear fusion and fission that govern the formation, evolution, and workings of the solar system in the universe. Some concepts studied are fundamental to science and demonstrate scale, proportion, and quantity, such as understanding how the matter of the world formed during the Big Bang and within the cores of stars over the cycle of their lives. In addition, an important aspect of Earth and space sciences involves understanding the concept of stability and change while making inferences about events in Earth's history based on a data record that is increasingly incomplete the farther one goes back in time. A mathematical analysis of radiometric dating is used to comprehend how absolute ages are obtained for the geologic record. The crosscutting concepts of energy and matter; scale, proportion, and quantity; and stability and change are called out as organizing concepts for this unit. Students are expected to demonstrate proficiency in developing and using models; constructing explanations and designing solutions; using mathematical and computational thinking; and obtaining, evaluating, and communicating information; and they are expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

nucleus, transformation, fission, fusion, radioactive decay, Polonium atoms, radiation, absorption of energy, nucleosynthesis, Big Bang Theory, electromagnetic energy, protons, neutrons, supernova explosions, radiation, solar flares, light spectra, galaxies, meteorites, plate tactonics, erosion

Formative Assessment Measures

Part A: Why is fusion considered the Holy Grail for the production of electricity? Why aren't all forms of radiation harmful to living things?

Students who understand the concepts are able to:

Develop models based on evidence to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

fission, fusion, and radioactive decay.

Use simple qualitative models based on evidence to illustrate the scale of energy released in nuclear processes relative to other kinds of transformations. Develop models based on evidence to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of alpha, beta, and gamma radioactive decays.

Students who understand the concepts are able to:

Communicate scientific ideas in multiple formats (including orally, graphically, textually, and mathematically) about the way stars, over their life cycles, produce elements.

Communicate scientific ideas about the way nucleosynthesis, and therefore the different elements it creates, vary as a function of the mass of a star and the stage of its lifetime.

Communicate scientific ideas about how in nuclear processes, atoms are not conserved, but the total number of protons plus neutrons is conserved.

Part C: Is the life span of a star predictable?

Students who understand the concepts are able to:

Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core in releasing energy that eventually reaches Earth in the form of radiation.

Develop a model based on evidence to illustrate the relationships between nuclear fusion in the sun's core and radiation that reaches Earth.

Part D: If there was nobody there to Tweet about it, how do we know that there was a Big Bang?

Students who understand the concepts are able to:

Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.

Construct an explanation of the Big Bang theory based on the astronomical evidence of the redshift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars).

Construct an explanation based on valid and reliable evidence that energy in the universe cannot be created or destroyed, only moved between one place and another place, between objects and/or fields, or between systems.

Part E: How can chemistry help us to figure out ancient events?

Students who understand the concepts are able to:

Apply scientific reasoning and evidence from ancient Earth materials, meteorites, and other planetary surfaces to construct an account of Earth's formation and early history.

Use available evidence within the solar system to reconstruct the early history of Earth, which formed along with the rest of the solar system 4.6 billion years ago.

Apply scientific reasoning to link evidence from ancient Earth materials, meteorites, and other planetary surfaces to claims about Earth's formation and early history, and assess the extent to which the reasoning and data support the explanation or conclusion.

Use available evidence within the solar system to construct explanations for how Earth has changed and how it remains stable.

Part B

Cliffside Park Public Schools

GRADE: 9-12

Interdisciplinary Connections				
NJSLS-	NJSLS- ELA NJSLS- Mathematics			
RST.11-12.1 Cite specific textual evi	dence to support analysis of	MP.2 Reason abstractly and quantitatively. (HS-ESS1-1), (HS-ESS1-2), (HS-ESS1-3)		
science and technical texts, attendir	ng to important distinctions the	,(HS-PS1-8)		
author makes and to any gaps or inc	consistencies in the account.	MP.4 Model with mathematics. (HS-ESS1	-1)	
(HS-ESS1-1)		HSN-Q.A.1 Use units as a way to understa	and problems and to guide the solution of	
WHST.9-12.2 Write informative/exp	planatory texts, including the	multi-step problems; choose and interpre	et units consistently in formulas; choose and	
narration of historical events, scient	ific procedures/ experiments, or	interpret the scale and the origin in graphs and data displays. (HS-ESS1-1),(HS-ESS1-2)		
technical processes. (HSESS1-3),(HS	-ESS1-2)	HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.		
SL.11-12.4 Present claims and findir	ngs, emphasizing salient points in			
a focused, coherent manner with re	-		propriate to limitations on measurement when	
reasoning, and well chosen details;		reporting quantities. (HS-ESS1-1), (HS-ESS		
adequate volume, and clear pronun	ciation. (HS-ESS1-3)		present a quantity in terms of its context.	
		(HS-ESS1-1)		
		-	more variables to represent relationships	
		between quantities; graph equations on o	coordinate axes with labels and scales.	
		(HS-ESS1-1), (HS-ESS1-2)		
		HSA-CED.A.4 Rearrange formulas to highlight a quantity of interest, using the same		
		reasoning as in solving equations. (HS-ES	S1-1),(HS-ESS1-2)	
Core Instructional Materials	Can include: Textbooks Series,			
21st Century Life and Careers		P 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards	8.1.12.A.2,8.1.12.A.4,8.1.12.C.2			
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities	
Think alouds	Leveled readers	Extended time	Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks	
Think-pair- share	Answer masking		Self-directed activities	
Visual aides	Answer eliminator			
Modeling	Highlighter			

Cliffside Park Public Schools

GRADE: 9-12

Cognates Color contrast		
-------------------------	--	--

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY HS-PS1-8 Matter and its Interactions HS-PS1-8: Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission, fusion, and radioactive decay. Clarification Statement: Emphasis is on simple qualitative models, such as pictures or diagrams, and on the scale of energy released in nuclear processes relative to other kinds of transformations. Assessment Boundary: Assessment does not include quantitative calculation of energy released. Assessment is limited to alpha, beta, and gamma radioactive decays. Evidence Statements: HS-PS1-8 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts Developing and Using Models** PS1.C: Nuclear Processes **Energy and Matter** Modeling in 9–12 builds on K–8 and progresses to using, Nuclear processes, including fusion, fission, In nuclear processes, atoms are not synthesizing, and developing models to predict and show and radioactive decays of unstable nuclei, conserved, but the total number of protons relationships among variables between systems and their involve release or absorption of energy. The plus neutrons is conserved. components in the natural and designed worlds. total number of neutrons plus protons does Develop a model based on evidence to illustrate the relationships not change in any nuclear process. between systems or between components of a system. Connections to other DCIs in this grade-band: HS.PS3.A ; HS.PS3.B ; HS.PS3.C ; HS.PS3.D ; HS.ESS1.A ; HS.ESS1.C ; HS.ESS3.A ; HS.ESS3.C Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS1.B ; MS.ESS2.A NJSLS- ELA: N/A NJSLS- Math: MP.4, HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3 5E Model HS-PS1-8: Develop models to illustrate the changes in the composition of the nucleus of the atom and the energy released during the processes of fission. fusion. and radioactive decay. Alpha Decay https://phet.colorado.edu/en/simulation/legacy/alpha-decay Students will be observing the changes that happen to the Polonium atoms as they are exposed to radiation. Engage Anticipatory Set 1) What happens to the mass number of each atom? 2) What is being added to each atom? What is being given off by each atom? 3) Does every atom react? Why or why not? Nuclear Fission Inquiry Exploration Lab Worksheets: https://phet.colorado.edu/en/contributions/view/3335 Student Inquiry

Cliffside Park Public Schools

GRADE: 9-12

	Simulation: https://phet.colorado.edu/en/simulation/legacy/nuclear-fission
	Students will be covering a series of activities where they will be examining various applications of nuclear reactions and nuclear
	chain reactions.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Evalopation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS1.C: Nuclear Processes
	Nuclear processes, including fusion, fission, and radioactive decays of unstable nuclei, involve release or absorption of energy. The
	total number of neutrons plus protons does not change in any nuclear process.
	Feasibility of Nuclear Power
Elaboration	https://www.youtube.com/watch?v=JMaEjEWL6PU
Extension Activity	http://www.world-nuclear.org/getmedia/ab488e1b-ba74-4a3e-8561-fb96297f37dc/world-electricity-production.png.aspx
	Students will be doing research and collecting data in an attempt to answer the question, "Is nuclear power worth the risk?"
Evaluation	Assessment Task A: Nuclear Fission Lab Responses and Model Drawings
Assessment Tasks	

		CUENICEDY	
HS-ESS1-3 Earth's Pl	ace in the Universe	CHEMISTRY	
		tars, over their life cycle, produce elements.	
		hthesis, and therefore the different elements created, varies	as a function of the mass of a star and
the stage of its lifetir			
Assessment Bounda	ary: Details of the many different nucle	eosynthesis pathways for stars of differing masses are not as	ssessed.
Evidence Statements	s: HS-ESS1-3	-	
Science	e & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Obtaining, evaluating	ng, and Communicating Information g, and communicating information in experiences and progresses to		Energy and Matter In nuclear processes, atoms are not
evaluating the validit	ty and reliability of the claims, ns.Communicate scientific ideas (e.g.		protons plus neutrons is conserved.
about phenomena a	nd/or the process of development	the Big Bang, nuclear fusion within stars produces all atomic nuclei lighter than and including iron, and the	
system) in multiple f	formats (including orally, graphically,	process releases electromagnetic energy. Heavier	
textually, and mathe	ematically).	elements are produced when certain massive stars achieve	
		a supernova stage and explode.	
	er DCIs in this grade-band: HS.PS1.A ;		
	across grade-bands: MS.PS1.A ; MS.E	SS1.A	
CCSS- ELA: WHST.9-2 CCSS- Math: MP.2	12.2, SL.11-12.4		
CC35- Math: MP.2		5E Model	
HS-ESS1-3: Commun	picate scientific ideas about the way s	tars, over their life cycle, produce elements.	
Engage	How Elements Are Made		
Anticipatory Set	https://www.opened.com/video/how-elements-are-made/5763719		
	The Life Cycle of Stars		
		40537/the-life-cycle-of-stars?from=cc_lesson_title	
Exploration		hat makes a star a star, and examine how different stars in t	he universe are different sizes, colors,
Student Inquiry	and temperatures - categorizing e	ach of those along the way.	
	How Elements Are Formed	ts (Just Flomental/Crience Ideas and Concents/User stores	nts are formed
	nttp://sciencelearn.org.nz/Contex	<pre>kts/Just-Elemental/Science-Ideas-and-Concepts/How-elemental</pre>	<u>nts-are-tormed</u>

Cliffside Park Public Schools

GRADE: 9-12

	1	٦
	Students would be able to read the following article and answer posed questions.	1
	Star Death and Creation of the Elements	1
	https://www.youtube.com/watch?v=DEw6X2BhIy8	1
′	This video from BBC 2 summarizes the way elements are created by the collapse of stars in the Universe.	1
	ļ/	In these
		Teache
		Studen
	l t	Topics t
Explanation		ESS1.A:
Concepts and Practices		<u>The stu</u>
		distanc
		Other t
'		<u>than ar</u>
'		achieve
· · · · · · · · · · · · · · · · · · ·	Stars and Elements	
Elaboration	https://www.khanacademy.org/partner-content/big-history-project/stars-and-elements	
Extension Activity	Using the different sections of this website, students could be assigned to work through the different tabs to gain a greater	1
	knowledge on the creation of the elements.	
	Assessment Task A:	
	Students will use at least two different formats to describe the following:	
	1. Helium and a small amount of other like nuclei were formed from high-energy collisions starting from protons and neutrons in the	1
	early universe before any stars existed.	1
Evaluation	2. More massive elements, up to iron, are produced in the cores of stars by a chain of processes of nuclear fusion, which also	1
Assessment Lasks	releases energy.	1
	3. Supernova explosions of massive stars are the mechanism by which elements more massive than iron are produced.	1
	4. There is a correlation between a star's mass and stage of development and the types of elements it can create during its lifetime.	1
	5. Electromagnetic emission and absorption spectra are used to determine a star's composition, motion and distance to Earth.	1

CHEMISTRY HS-ESS1-1 Earth's Place in the Universe HS-ESS1-1: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation. Clarification Statement: Emphasis is on the energy transfer mechanisms that allow energy from nuclear fusion in the sun's core to reach Earth. Examples of evidence for the model include observations of the masses and lifetimes of other stars, as well as the ways that the sun's radiation varies due to sudden solar flares ("space weather"), the 11-year sunspot cycle, and non-cyclic variations over centuries. Assessment Boundary: Assessment does not include details of the atomic and subatomic processes involved with the sun's nuclear fusion. Evidence Statements: HS-ESS1-1 Science & Engineering Practices **Disciplinary Core Ideas Cross-Cutting Concepts Developing and Using Models** ESS1.A: The Universe and Its Stars Scale, Proportion, and Quantity Modeling in 9–12 builds on K–8 experiences and The star called the sun is changing and will burn out The significance of a phenomenon is dependent progresses to using, synthesizing, and developing over a lifespan of approximately 10 billion years. on the scale, proportion, and quantity at which it PS3.D: Energy in Chemical Processes and Everyday Life occurs. models to predict and show relationships among variables between systems and their components Nuclear Fusion processes in the center of the sun in the natural and designed world(s). release the energy that ultimately reaches Earth as Develop a model based on evidence to illustrate radiation. (secondary) the relationships between systems or between components of a system. Connections to other DCIs in this grade-band: HS.PS1.C ; HS.PS3.A Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS4.B ; MS.ESS1.A ; MS.ESS2.A ; MS.ESS2.D NJSLS- ELA: RST.11-12.1 NJSLS- Math: MP.2, MP.4, HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3, HSA-SSE.A.1, HSA-CED.A.2, HSA-CED.A.4 5E Model HS-ESS1-1: Develop a model based on evidence to illustrate the life span of the sun and the role of nuclear fusion in the sun's core to release energy that eventually reaches Earth in the form of radiation. Engage How the Universe Works: Extreme Stars https://www.youtube.com/watch?v=DCI-4wYNPEM Anticipatory Set The Sun and Its Core Exploration http://www.blackrocksolar.org/wp-content/uploads/2014/09/H.S.-The-Sun-and-its-Core-Teacher-Guide-Part-1-of-3.pdf Student Inquiry

	Radiation and Climate
	http://betterlesson.com/lesson/638116/radiation-and-climate?from=cc_lesson_title_
	In this lesson students continue to learn about earth's atmosphere in terms of how solar radiation interacts with gases.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	ESS1.A: The Universe and Its Stars
	The star called the sun is changing and will burn out over a lifespan of approximately 10 billion years.
	PS3.D: Energy in Chemical Processes and Everyday Life
	Nuclear Fusion processes in the center of the sun release the energy that ultimately reaches Earth as radiation. (secondary)
Elaboration	Interior of the Sun: Discussion Questions
Extension Activity	http://www.ck12.org/earth-science/Interior-of-the-Sun/cthink/Interior-of-the-Sun-Discussion-Questions/
	Assessment Task A: Nuclear Fusion Popcorn Model
	Students will use the model to:
Fuchantion	predict how the relative proportions of hydrogen to helium change as the sun ages.
	qualitatively describe the scale of the energy released by the fusion process as being much larger than the scale of the energy
Assessment Tasks	released by chemical processes
	explicitly identify that chemical process are unable to produce the amount of energy flowing out of the sun over long periods of
	time, thus requiring fusion processes as a mechanism for energy release in the sun.

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

CHEMISTRY

HS-ESS1-2 Earth's Place in the Universe

HS-ESS1-2: Construct an explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition of matter in the universe.

Clarification Statement: Emphasis is on the astronomical evidence of the redshift of light from galaxies as an indication that the universe is currently expanding, the cosmic microwave background as the remnant radiation from the Big Bang, and the observed composition of ordinary matter of the universe, primarily found in stars and interstellar gases (from the spectra of electromagnetic radiation from stars), which matches that predicted by the Big Bang theory (3/4 hydrogen and 1/4 helium).

Assessment Boundary: N/A

Evidence Statements: HS-ESS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ESS1.A: The Universe and Its Stars	Energy and Matter
Constructing explanations and designing solutions in 9–12 builds on	The study of stars' light spectra and brightness is used to	Energy cannot be
K-8 experiences and progresses to explanations and designs that are	identify compositional elements of stars, their movements, and	<u>created or</u>
supported by multiple and independent student-generated sources	their distances from Earth.	destroyed-only moved
of evidence consistent with scientific ideas, principles, and theories.	The Big Bang theory is supported by observations of distant	between one place and
Construct an explanation based on valid and reliable evidence	galaxies receding from our own, of the measured composition	another place, between
obtained from a variety of sources (including students' own	of stars and non-stellar gases, and of the maps of spectra of the	objects and/or fields, or
investigations, theories, simulations, peer review) and the	primordial radiation (cosmic microwave background) that still	<u>between systems.</u>
assumption that theories and laws that describe the natural world	<u>fills the universe.</u>	
<u>operate today as they did in the past and will continue to do so in</u>	Other than the hydrogen and helium formed at the time of the	
<u>the future.")</u>	Big Bang, nuclear fusion within stars produces all atomic nuclei	
Connections to Nature of Science	lighter than and including iron, and the process releases	
Science Models, Laws, Mechanisms, and Theories Explain Natural	electromagnetic energy. Heavier elements are produced when	
Phenomena	certain massive stars achieve a supernova stage and explode.	
A scientific theory is a substantiated explanation of some aspect of	PS4.B: Electromagnetic Radiation	
the natural world, based on a body of facts that have been	Atoms of each element emit and absorb characteristic	
repeatedly confirmed through observation and experiment and the	frequencies of light. These characteristics allow identification of	
science community validates each theory before it is accepted. If	the presence of an element, even in microscopic quantities.	
new evidence is discovered that the theory does not accommodate,	(secondary)	
the theory is generally modified in light of this new evidence.		
Connections to other DCIs in this grade-band: HS.PS1.A ; HS.PS1.C ;	HS.PS3.A ; HS.PS3.B ; HS.PS4.A	

Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS4.B ; MS.ESS1.A				
NJSLS- ELA: RST.11-12.1, WHST.9-12.2				
NJSLS- Math: MP.2, HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3, HSA-SSE.A.1, HSA-CED.A.2, HSA-CED.A.4				
	5E Model			
HS-ESS1-2: Construct ar	explanation of the Big Bang theory based on astronomical evidence of light spectra, motion of distant galaxies, and composition			
of matter in the univers	e.			
	The Big Bang Theory- Theme Song			
Engage	https://www.youtube.com/watch?v=X41bA4I-h0w			
Anticipatory Set	The Big Bang- Stephen Hawking			
	https://www.youtube.com/watch?v=gs-yWMuBNr4			
	The Big Bang			
Exploration	http://betterlesson.com/lesson/641870/the-big-bang?from=cc_lesson_title			
Student Inquiry	In this lesson, we talk about the process of the Big Bang, how it led to the "start" of the universe, and most importantly, the two			
Student inquiry	main pieces of evidence that scientists use to support the Big Bang - cosmic background radiation and red-shifting of distant			
	galaxies.			
	In these lessons			
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):			
	ESS1.A: The Universe and Its Stars			
	The study of stars' light spectra and brightness is used to identify compositional elements of stars, their movements, and their			
	distances from Earth.			
Explanation	The Big Bang theory is supported by observations of distant galaxies receding from our own, of the measured composition of stars			
Concepts and Practices	and non-stellar gases, and of the maps of spectra of the primordial radiation (cosmic microwave background) that still fills the			
	<u>universe.</u>			
	Other than the hydrogen and helium formed at the time of the Big Bang, nuclear fusion within stars produces all atomic nuclei			
	lighter than and including iron, and the process releases electromagnetic energy. Heavier elements are produced when certain			
	massive stars achieve a supernova stage and explode.			
	PS4.B: Electromagnetic Radiation			
	Atoms of each element emit and absorb characteristic frequencies of light. These characteristics allow identification of the presence			
	<u>of an element, even in microscopic quantities. (secondary)</u>			
	Mars Dead or Alive: Welcome to Mars			
Elaboration	https://www.opened.com/video/mars-dead-or-alive-welcome-to-mars/204362			
-	This video segment shows the range of emotions experienced by NASA scientists and technicians as they observe the landing and			
	the beginning of a new era of space exploration. Is also includes clips from an animation showing the atmospheric entry and landing			

Cliffside Park Public Schools

	of a Mars rover.
	Assessment Task A: Constructed Explanation
	Following the lesson, the students will construct an explanation describing the following chain of reasoning:
	1. Redshifts indicate that an object is moving away from the observer, thus the observed redshift from most galaxies and the redshift
Evaluation	vs. distance relationship is evidence that the universe is expanding.
Assessment Tasks	2. The observed background cosmic radiation and the ratio of hydrogen to helium have been shown to be consistent with the
	universe that was very dense and hot a long time ago and that evolved through different stages at it expanded and cooled.
	3. An expanding universe must have been smaller in the past and can be extrapolated back in time to a tiny size from which it
	expanded.

CHEMISTRY			
HS-ESS1-6 Earth's Place in the Universe			
HS-ESS1-6: Apply scientific reasoning and evidence fron	n ancient Earth materials, meteorites, and other planet	tary surfaces to construct an account of	
Earth's formation and early history.			
Clarification Statement: Emphasis is on using available e	vidence within the solar system to reconstruct the early	history of Earth, which formed along with	
the rest of the solar system 4.6 billion years ago. Exampl	es of evidence include the absolute ages of ancient mat	erials (obtained by radiometric dating of	
meteorites, moon rocks, and Earth's oldest minerals), th	e sizes and compositions of solar system objects, and th	e impact cratering record of planetary	
surfaces.			
Assessment Boundary: N/A			
Evidence Statements: HS-ESS1-6			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing Solutions	ESS1.C: The History of Planet Earth	Stability and Change	
Constructing explanations and designing solutions in	Although active geologic processes, such as plate	Much of science deals with constructing	
9–12 builds on K–8 experiences and progresses to	tectonics and erosion, have destroyed or altered most	explanations of how things change and how	
explanations and designs that are supported by multiple	of the very early rock record on Earth, other objects in	<u>they remain stable.</u>	
and independent student-generated sources of	the solar system, such as lunar rocks, asteroids, and		
evidence consistent with scientific ideas, principles, and	meteorites, have changed little over billions of years.		
<u>theories.</u>	Studying these objects can provide information about		
Apply scientific reasoning to link evidence to the claims	Earth's formation and early history.		
to assess the extent to which the reasoning and data	PS1.C: Nuclear Processes Spontaneous radioactive		
support the explanation or conclusion.	decays follow a characteristic exponential decay law.		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

Connections to Nature	of Science	Nuclear lifetimes allow radiometric dating to be used	
Science Models, Laws, I	Mechanisms, and Theories	to determine the ages of rocks and other	
Explain Natural Phenon	nena	materials.(secondary)	
A scientific theory is a su	ubstantiated explanation of		
some aspect of the natu	aral world, based on a body of		
facts that have been rep	peatedly confirmed through		
observation and experir	ment and the science community		
validates each theory be	efore it is accepted. If new		
evidence is discovered t	hat the theory does not		
accommodate, the theo	ory is generally modified in light		
of this new evidence.			
Models, mechanisms, a	nd explanations collectively		
serve as tools in the dev	velopment of a scientific theory.		
Connections to other D	Cls in this grade-band: HS.PS2.A	; HS.PS2.B	
Articulation of DCIs acro	oss grade-bands: MS.PS2.B ; MS.	ESS1.B ; MS.ESS1.C ; MS.ESS2.A ; MS.ESS2.B	
CCSS- ELA: RST.11-12.1,	, RST.11-12.8		
CCSS- Math: MP.2, HSN	-Q.A.1, HSN-Q.A.2, HSN-Q.A.3, F	ISF-IF.B.5, HSS-ID.B.6	
		5E Model	
HS-ESS1-6: Apply scient	tific reasoning and evidence from	n ancient Earth materials, meteorites, and other planet	ary surfaces to construct an account of
Earth's formation and e	early history.		
	Crash Course: Formation of Eart	<u>h and Solar System</u>	
Engago	https://www.opened.com/video/crash-course-formation-of-earth-and-solar-system/5767508		
Engage Anticipatory Set	This Crash Course video focuses on the formation and development of the Earth. Students will learn about the Solar nebula, the		
Anticipatory Set	birth of the sun, the formation of planets, and how the Earth and the rest of the solar system developed over the last 4.567 billion		
	years.		
	Earth Formation		
	https://www.opened.com/video	o/earth-formation-khan-academy/180397	
	A video about how the Earth is a the byproduct of a local supernova.		
	Birth of the Moon		
Exploration	bration https://www.opened.com/video/birth-of-the-moon/207963		
Student Inquiry			
	probing its interior. What are they learning about our own planet's beginnings?		
	Radiometric Dating	·	
	http://www.earth-time.org/Less	son_Plan.pdf	
Students will learn how scientists determine the ages of rocks using radioactive decay. They will be introduced to the concepts of			

	half-life and decay rate, and use parent/daughter isotope ratios to calculate dates
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	ESS1.C: The History of Planet Earth
Concepts and Practices	Although active geologic processes, such as plate tectonics and erosion, have destroyed or altered most of the very early rock
	record on Earth, other objects in the solar system, such as lunar rocks, asteroids, and meteorites, have changed little over billions
	of years. Studying these objects can provide information about Earth's formation and early history.
	PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow
	radiometric dating to be used to determine the ages of rocks and other materials.(secondary)
Elaboration	Radioactivity and Half-Life
	http://betterlesson.com/lesson/635131/radioactivity-half-life?from=cc_lesson_title
Extension Activity	Students explore the methods and techniques involved in radioactive dating
Evaluation	Assessment Task: Constructed Explanation
Assessment Tasks	Students use reasoning to connect the evidence to construct the explanation of EArth's formation and early history.

BOE APPROVAL: August 2016

Unit 6: Overview
Unit 6: Human Impact- The Chemistry of Sustainability
ontent Area: Chemistry
acing: 30 Instructional Days
Essential Question
ow do Earth's geochemical processes and human activities affect each other?
Student Learning Objectives (Performance Expectations)
S-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.
S-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and
rants.
S-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through
ngineering.
S-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including
ost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.
S-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on
teractions within and between systems relevant to the problem.
S-ESS2-6: Develop a quantitative model to describe the cycling of carbon among the hydrosphere, atmosphere, geosphere, and biosphere.
Unit Summary
this unit of study, students use cause and effect to develop models and explanations for the ways that feedbacks among different Earth systems control the ppearance of Earth's surface. Central to this is the tension between internal systems, which are largely responsible for creating land at Earth's surface (e.g., olcanism and mountain building), and the sun-driven surface systems that tear down the land through weathering and erosion. Students begin to examine he ways that human activities cause feedbacks that create changes to other systems. Students understand the system interactions that control weather and imate, with a major emphasis on the mechanisms and implications of climate change. Students model the flow of energy and matter between different omponents of the weather system and how this affects chemical cycles such as the carbon cycle. Engineering and technology figure prominently here, as cudents use mathematical thinking and the analysis of geoscience data to examine and construct solutions to the many challenges facing long-term human ustainability on Earth. Here students will use these geoscience data to explain climate change over a wide range of timescales, including over one to ten years
rge volcanic eruption, ocean circulation; ten to hundreds of years: changes in human activity, ocean circulation, solar output; tens of thousands to hundreds f thousands of years: changes to Earth's orbit and the orientation of its axis; and tens of millions to hundreds of millions of years: long-term changes in tmospheric composition).

Technical Terms

Sustainability, human sustainability, volcanism, mountain building, weathering, erosion, geoscience data, atmospheric composition, solar output, system interactions, geochemical, hydrosphere, atmosphere, geosphere, biosphere, biogeochemical cycles

Formative Assessment Measures				
Part A: What happens if we change the chemical composition of our atmosphere?				
Students who understand the concepts are able to:				
Use a model to describe how varia	Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.			
Use empirical evidence to differer	itiate between how variations in th	e flow of energy into and out of Earth	n's systems result in climate changes.	
Use multiple lines of evidence to s	support how variations in the flow	of energy into and out of Earth's syste	ems result in climate changes.	
	ong the hydrosphere, atmosphere,	geosphere, and biosphere?		
Students who understand the con	<u>cepts are able to:</u>			
			e, geosphere, and biosphere, biogeochemical cycles	
•	÷	cycles that include the cycling of cark	oon through the ocean, atmosphere, soil, and	
biosphere, providing the foundation				
		erdisciplinary Connections		
	S- ELA		JSLS- Mathematics	
RST.11-12.7 Integrate and evaluat	•	MP.2 Reason abstractly and quantita		
presented in diverse formats and			IS-ETS1-3),(HS-ETS1-4) MP.4 Model with	
video, multimedia) in order to add	•	mathematics. (HS-PS1-4), (HS-ETS1-1),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)		
problem. (HS-ETS1-1),(HS-ETS1-3)		HSN-Q.A.1 Use units as a way to understand problems and to guide the solution of		
	· · · · · · · · · · · · · · · · · · ·	smulti-step problems; choose and interpret units consistently in formulas; choose and		
in a science or technical text, verif		interpret the scale and the origin in graphs and data displays. (HS-PS1-4),(HS-PS1-5),(HS-PS1-7),(HS-PS1-8)		
corroborating or challenging conc		HSN-Q.A.2 Define appropriate quantities for the purpose of descriptive modeling.		
information. (HS-ETS1-1),(HS-ETS1 RST.11-12.9 Synthesize information	-	(HS-PS1-4),(HS-PS1-7)	ities for the purpose of descriptive modeling.	
texts, experiments, simulations) ir		HSN-Q.A.3 Choose a level of accuracy appropriate to limitations on measurement when		
· · · ·	-	reporting quantities. (HS-PS1-4),(HS-PS1-5),(HS-PS1-7)		
process, phenomenon, or concept, resolving conflicting information reporting quantities. (Hwhen possible. (HS-ETS1-1), (HS-ETS1-3)			51-5),(15-151-7)	
Core Instructional Materials				
21st Century Life and Careers				
, Technology Standards				
Modifications				
English Language Learners Special Education		At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities	

BOE APPROVAL: August 2016

Cliffside Park Public Schools

Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

	CHEMISTRY		
HS-ESS2-4 Earth's Systems			
HS-ESS2-4: Use a model to describe how var	<u>riations in the flow of energy into and out of Earth's systems result in changes in clim</u>	nate.	
Clarification Statement: Examples of the cau	uses of climate change differ by timescale, over 1-10 years: large volcanic eruption, oce	ean circulation; 10-100s of	
years: changes in human activity, ocean circu	ulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the o	rientation of its axis; and	
10-100s of millions of years: long-term chang	ges in atmospheric composition.		
Assessment Boundary: Assessment of the re	esults of changes in climate is limited to changes in surface temperatures, precipitation	n patterns, glacial ice	
volumes, sea levels, and biosphere distributi	on.		
Evidence Statements: HS-ESS2-4			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	ESS1.B: Earth and the Solar System	Cause and Effect	
Modeling in 9–12 builds on K–8 experiences	Cyclical changes in the shape of Earth's orbit around the sun, together with changes	Empirical evidence is	
and progresses to using, synthesizing, and	in the tilt of the planet's axis of rotation, both occurring over hundreds of thousands	required to differentiate	
developing models to predict and show	of years, have altered the intensity and distribution of sunlight falling on the earth.	<u>between cause and</u>	
relationships among variables between	These phenomena cause a cycle of ice ages and other gradual climate changes.	correlation and make claims	
systems and their components in the	(secondary)	about specific causes and	
natural and designed world(s).	ESS2.A: Earth Materials and Systems	effects.	
<u>Use a model to provide mechanistic</u>	The geological record shows that changes to global and regional climate can be		
accounts of phenomena.	caused by interactions among changes in the sun's energy output or Earth's orbit,		
onnections to Nature of Science tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human			
cientific Knowledge is Based on Empirical activities. These changes can occur on a variety of time scales from sudden (e.g.,			
Evidence Science arguments are	volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.		
strengthened by multiple lines of evidence	ESS2.D: Weather and Climate		

GRADE: 9-12

	The foundation for Forth's global dimeter systems is the electromegraphic rediction			
supporting a single ex				
	from the sun, as well as its reflection, absorption, storage, and redistribution among			
the atmosphere, ocean, and land systems, and this energy's re-radiation into space.				
	DCIs in this grade-band: HS.PS3.A ; HS.PS3.B ; HS.LS2.C ; HS.ESS1.C ; HS.ESS3.C ; HS.ESS3.D			
	cross grade-bands: MS.PS3.A ; MS.PS3.B ; MS.PS3.D ; MS.PS4.B ; MS.LS1.C ; MS.LS2.B ; MS.LS2.C ; MS.ESS2.A ; MS.ESS2.B ; MS.ESS2.C			
MS.ESS2.D ; MS.ESS3	.C ; MS.ESS3.D			
NJSLS- ELA: SL.11-12.	5			
NJSLS- Math: MP.2, N	ЛР.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3			
	5E Model			
HS-ESS2-4: Use a mod	del to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.			
Engage	Climate Change: How Do We Know?			
Anticipatory Set	http://climate.nasa.gov/evidence/			
	Earth's Energy Flows and Climate			
	http://www.pbslearningmedia.org/resource/pcep15-sci-ess-energyflows/earths-energy-flows-and-climate/			
	In this lesson, students will learn how Earth's climate results from the ways that energy enters, circulates within, and flows out of the			
	Earth system. Explore the flows of energy in regional locations and then at the global level to understand how the increased			
	greenhouse effect causes global warming.			
	From the given model in the lesson above, students will identify and describe the components of the model relevant for their			
	mechanistic descriptions. Given models include at least one factor that affects the input of energy, at least one factor that affects the			
output of energy, and at least one factor that affects the storage and redistribution of energy. Factors are derived from the f				
	list:			
Exploration	- Changes in Earth's orbit and the orientation of its axis			
Student Inquiry	- Changes in the sun's energy output			
	- Configuration of continents resulting from tectonic activity			
	- Ocean circulation			
	- Atmospheric composition (including amount of water vapor and CO2)			
	- Atmospheric circulation			
	- Volcanic activity			
	- Glaciation			
	- Changes in extent or type of vegetation cover			
- Human activities				
	From the given model, students identify the relevant different time scales on which the factors operate.			
Evaloration	In these lessons			
Explanation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
Concepts and Practice	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			

GRADE: 9-12

	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):			
	ESS1.B: Earth and the Solar System			
	Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt of the planet's axis of rotation, both			
	occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. Thes			
	phenomena cause a cycle of ice ages and other gradual climate changes. (secondary)			
	ESS2.A: Earth Materials and Systems			
	The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun's			
	energy output or Earth's orbit, tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These			
	changes can occur on a variety of time scales from sudden (e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term			
	tectonic cycles. ESS2.D: Weather and Climate			
	The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption,			
	storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space.			
Elaboration	Global Climate Change			
Extension Activity	https://www3.epa.gov/climatechange/kids/resources/lesson-plans.html			
	Assessment Task A:			
Evaluation	Students use the given model to provide a mechanistic account of the relationship between energy flow in Earth's systems and			
Assessment Tasks	changes in climate, including:			
	1. The specific cause and effect relationships between the factors and the effect on energy flow into and out of Earth's systems; and			
	2. The net effect of all of the competing factors in changing the climate.			

CHEMISTRY			
HS-ETS1-1 Engineering Design			
HS-ETS1-1: Analyze a major global challenge to specify qualitat	ive and quantitative criteria and constraints for solu	tions that account for societal needs	
and wants.			
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering	Connections to Engineering,	
Asking questions and defining problems in 9–12 builds on K–8	<u>Problems</u>	Technology, and Applications of	
experiences and progresses to formulating, refining, and	Criteria and constraints also include satisfying any	Science	

Cliffside Park Public Schools

GRADE: 9-12

NJSLS- Math: MP.2, MP.4				
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9				
Articulation of DCIs across grade-bands: MS.ETS1.A				
Connections to other DCIs in this grade-band: HS-PS2-3, HS-PS3-3				
	<u>communities.</u>			
	challenges also may have manifestations in local			
	can be addressed through engineering. These global	about technology.		
		benefits is a critical aspect of decisions		
	as the need for supplies of clean water and food or			
	Humanity faces major global challenges today, such			
		impacts on society and the		
constraints for successful solutions.	a way that one can tell if a given design meets	New technologies can have deep		
Analyze complex real-world problems by specifying criteria and	quantified to the extent possible and stated in such	World		
using models and simulations.	risk mitigation into account, and they should be	Technology on Society and the Natural		
evaluating empirically testable questions and design problems	requirements set by society, such as taking issues of	Influence of Science, Engineering, and		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

	CHEMISTRY		
HS-ETS1-2 Engineering Design			
HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through			
engineering.			
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-2			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution		
Constructing explanations and designing solutions in 9–12	Criteria may need to be broken down into simpler		
builds on K–8 experiences and progresses to explanations and	ones that can be approached systematically, and		
designs that are supported by multiple and independent	decisions about the priority of certain criteria over		
student-generated sources of evidence consistent with	<u>others (trade-offs) may be needed.</u>		
scientific ideas, principles and theories.			
Design a solution to a complex real-world problem, based on			
scientific knowledge, student-generated sources of evidence,			
prioritized criteria, and tradeoff considerations.			
Connections to other DCIs in this grade-band: HS-PS1-6, HS-PS2-3			
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C			
NJSLS- ELA: N/A			
NJSLS- Math: MP.4			

BOE APPROVAL: August 2016

Cliffside Park Public Schools

CHEMISTRY				
HS-ETS1-3 Engineering Design				
HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints,				
including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.				
Clarification Statement: N/A				
Assessment Boundary: N/A				
Evidence Statements: HS-ETS1-3				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Constructing Explanations and Designing Solutions	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and		
Constructing explanations and designing solutions in	When evaluating solutions, it is important to take	Applications of Science		
		Influence of Science, Engineering, and Technology		
explanations and designs that are supported by	safety, reliability, and aesthetics, and to consider	on Society and the Natural World		
		New technologies can have deep impacts on society		
sources of evidence consistent with scientific ideas,		and the environment, including some that were not		
principles and theories.		anticipated. Analysis of costs and benefits is a critical		
Evaluate a solution to a complex real-world problem,		aspect of decisions about technology.		
based on scientific knowledge, student-generated				
sources of evidence, prioritized criteria, and tradeoff				
considerations.				
Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6				
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B				
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9				
NJSLS- Math: MP.2, MP.4				

BOE APPROVAL: August 2016

Cliffside Park Public Schools

CHEMISTRY				
HS-ETS1-4 Engineering Design				
HS-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and				
constraints on interactions within and between systems relevant to the problem.				
Clarification Statement: N/A				
Assessment Boundary: N/A				
Evidence Statements: HS-ETS1-4				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Using Mathematics and Computational Thinking	ETS1.B: Developing Possible Solutions	Systems and Systems Models		
Mathematical and computational thinking in 9-12 builds on	Both physical models and computers can be used	Systems and System Models Models (e.g.,		
K-8 experiences and progresses to using algebraic thinking	in various ways to aid in the engineering design	physical, mathematical, computer models)		
and analysis, a range of linear and nonlinear functions	process. Computers are useful for a variety of	can be used to simulate systems and		
including trigonometric functions, exponentials and	purposes, such as running simulations to test	interactions—including energy, matter, and		
logarithms, and computational tools for statistical analysis to	different ways of solving a problem or to see	information flows — within and between		
analyze, represent, and model data. Simple computational	which one is most efficient or economical; and in	systems at different scales.		
simulations are created and used based on mathematical	making a persuasive presentation to a client about			
models of basic assumptions.	how a given design will meet his or her needs.			
Use mathematical models and/or computer simulations to				
predict the effects of a design solution on systems and/or the				
interactions between systems.				
Connections to other DCIs in this grade-band: HS-LS2-7, HS-LS4-6				
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C				
NJSLS- ELA: N/A				
NJSLS- Math: MP.2, MP.4				

BOE APPROVAL: August 2016

Cliffside Park Public Schools

		CHEMISTRY		
HS-ESS2-6 Earth's System	ns			
HS-ESS2-6: Develop a qu	antitative model to describe the	cycling of carbon among the hydrosphere, atmosp	here, geosphere, and biosphere.	
Clarification Statement:	Emphasis is on modeling biogeoc	hemical cycles that include the cycling of carbon the	rough the ocean, atmosphere, soil, and	
biosphere (including hum	nans), providing the foundation fo	or living organisms.		
Assessment Boundary: N	I/A			
Evidence Statements: HS	<u>-ESS2-6</u>			
Science & Ei	ngineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using M	<u>odels</u>	ESS2.D: Weather and Climate	Energy and Matter	
Modeling in 9–12 builds of	on K–8 experiences and	Gradual atmospheric changes were due to plants	The total amount of energy and matter in	
progresses to using, synt	hesizing, and developing models	and other organisms that captured carbon dioxide	closed systems is conserved.	
to predict and show relat	<u>ionships among variables</u>	and released oxygen.		
	eir components in the natural	Changes in the atmosphere due to human activity		
and designed world(s).		have increased carbon dioxide concentrations and		
		thus affect climate.		
	stems or between components			
<u>of a system.</u>				
		HS.PS1.B ; HS.PS3.D ; HS.LS1.C ; HS.LS2.B ; HS.ESS3		
	ss grade-bands: MS.PS1.A ; MS.P	S3.D ; MS.PS4.B ; MS.LS2.B ; MS.ESS2.A ; MS.ESS2	.B ; MS.ESS2.C ; MS.ESS3.C ; MS.ESS3.D	
NJSLS- ELA: N/A				
NJSLS- Math: MP.2, MP.4	4, HSN-Q.A.1, HSN-Q.A.2, HSN-Q			
		5E Model		
		cycling of carbon among the hydrosphere, atmosp	here, geosphere, and biosphere.	
Engage	The Carbon Cycle			
Anticipatory Set	http://www.sciencecourseware.org/eec/GlobalWarming/Tutorials/CarbonCycle/			
	Carbon and Climate			
Exploration	http://carboncycle.aos.wisc.edu/			
Student Inquiry Using the interactive applet, students will develop quantitative models depicting future human emissions and fut				
	the oceans and on the land.			
Explanation	In these lessons			
Concepts and Dractices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
	Students Should: Verbalize conce	eptual understandings and demonstrate scientific and	nd engineering practices.	

GRADE: 9-12

	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	ESS2.D: Weather and Climate		
	Gradual atmospheric changes were due to plants and other organisms that captured carbon dioxide and released oxygen.		
	Changes in the atmosphere due to human activity have increased carbon dioxide concentrations and thus affect climate.		
	Understanding the Carbon Cycle: A Jigsaw Approach		
Elaboration	http://serc.carleton.edu/NAGTWorkshops/climatechange/activities/15162.html		
	In this "jigsaw" exercise, each student is assigned one of five geochemical processes in the carbon cycle to research, fully		
Extension Activity	understand, and then explain to others in groups of five. At the end of class all students will know about each of the five processes,		
	and thus develop an integrated understanding of the entire carbon cycle.		
	Assessment Task: Student Model		
Evaluation	Students used the model to explicitly identify the conservation of matter as carbon cycles through various components of Earth's		
Assessment Tasks	systems		
	Students identify the limitations of the model in accounting for all of Earth's carbon.		

CHEMISTRY

HS-ESS2-7 Earth Systems

HS-ESS2-7: Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.

Clarification Statement: Emphasis is on the dynamic causes, effects, and feedbacks between the biosphere and Earth's other systems, whereby geoscience factors control the evolution of life, which in turn continuously alters Earth's surface. Examples of include how photosynthetic life altered the atmosphere through the production of oxygen, which in turn increased weathering rates and allowed for the evolution of animal life; how microbial life on land increased the formation of soil, which in turn allowed for the evolution of land plants; or how the evolution of corals created reefs that altered patterns of erosion and deposition along coastlines and provided habitats for the evolution of new life forms.

Assessment Boundary: Assessment does not include a comprehensive understanding of the mechanisms of how the biosphere interacts with all of Earth's other systems.

Evidence Statements: HS-ESS2-7

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Engaging in Argument from Evidence	ESS2.D: Weather and Climate	Stability and Change		
Engaging in argument from evidence in 9-12 builds	Gradual atmospheric changes were due to plants and	Much of science deals with constructing		
on K–8 experiences and progresses to using	other organisms that captured carbon dioxide and	explanations of how things change and how they		
appropriate and sufficient evidence and scientific	released oxygen.	remain stable.		
reasoning to defend and critique claims and	ESS2.E Biogeology			
explanations about the natural and designed	The many dynamic and delicate feedbacks between			
world(s). Arguments may also come from current	the biosphere and other Earth systems cause a			
scientific or historical episodes in science.	continual co-evolution of Earth's surface and the life			
Construct an oral and written argument or	that exists on it.			
counter-arguments based on data and evidence.				
Connections to other DCIs in this grade-band: N/A				
Articulation of DCIs across grade-bands: MS.LS2.A ; MS.LS4.D ; MS.ESS2.A ; MS.ESS3.A ; MS.ESS3.B				
NJSLS- ELA: RST.11-12.1, WHST.9-12.2				
NJSLS- Math: MP.2, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3				
5E Model				
HS-ESS2-7: Construct an argument based on evidence about the simultaneous coevolution of Earth's systems and life on Earth.				
ngage The Long-Term Co-Evolution of Life and the Planet				
nticipatory Set <u>http://www.lifeandplanet.net/</u>				

Exploration Student Inquiry	Coevolution of the Earth's Systems and Life on Earth: PowerPoint luckasavitch.weebly.com/uploads/3/7/3/8/37384789/samantha_gernat.pptx The Coevolution of Life and Environments: Article http://www.ib.usp.br/zoologia/evolution/papers/Knoll_%2002.pdf	
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): ESS2 D: Weather and Climate	
Elaboration Extension Activity	<u>Coevolution</u> Describes evolution of species in symbiotic relationships. http://www.ck12.org/biology/Coevolution/lesson/Coevolution-BIO/?referrer=featured_content_	
Evaluation Assessment Tasks	Assessment Task A: Student Argument Students use at least two examples to construct oral and written logical arguments. The examples: 1. Include that the evolution of photosynthetic organisms led to a drastic change in Earth's atmosphere and oceans in which the free oxygen produced caused worldwide deposition of iron oxide formations, increased weathering due to an oxidizing atmosphere and the evolution of animal life that depends on oxygen for respiration; 2. Identify causal links and feedback mechanisms between changes in the biosphere and changes in Earth's other systems.	