

Cliffside Park Public Schools

GRADE: 9-12

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Unit 1: Overview **Unit 1: Forces and Motion Content Area: Physics** Pacing: 25 Instructional days **Essential Question** How can one explain and predict interactions between objects and within systems of objects? Student Learning Objectives (Performance Expectations) HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship amongthe net force on a macroscopic object, its mass, and its acceleration. HS-PS2-2: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system. HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering. HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts. Unit Summarv In this unit of study, students are expected to plan and conduct investigations, analyze data and using math to support claims, and apply scientific ideas to solve design problems students in order to develop an understanding of ideas related to why some objects keep moving and some objects fall to the ground. Students will also build an understanding of forces and Newton's second law. Finally, they will develop an understanding that the total momentum of a system of objects is conserved when there is no net force on the system. Students are also able to apply science and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision. The crosscutting concepts of patterns, cause and effect, and systems and systems models are called out as organizing concepts for these disciplinary core ideas. Students are expected to demonstrate proficiency in planning and conducting investigations, analyzing data and using math to support claims, and applying scientific ideas to solve design problems and to use these practices to demonstrate understanding of the core ideas. **Technical Terms**

Newton's Second Law of Motion, macroscopic object, velocity, non-relativistic speed, net force, subatomic scales, conservation of momentum, collision, elasticity, vector drawings, causal relationships, correlational relationships, net force

Formative Assessment Measures

BOE APPROVAL: August 2016

Part A: How do they know how long the yellow light should be on before it turns red? (traffic light)

Students who understand the concepts are able to:

Analyze data using tools, technologies, and/or models to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Analyze data using one-dimensional motion at nonrelativistic speeds to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Part B: How can a piece of space debris the size of a pencil eraser destroy the International Space Station?

Students who understand the concepts are able to:

Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the system.

Use mathematical representations of the quantitative conservation of momentum and the qualitative meaning of this principle in systems of two macroscopic bodies moving in one dimension.

Describe the boundaries and initial conditions of a system of two macroscopic bodies moving in one dimension.

Part C: Red light cameras were placed in intersections to reduce the number of collisions caused by cars running red lights. Many people thought that they were unfair and demanded that they be removed. As an expert on the physics of moving bodies, you are challenged to engineer traffic signals to proactively reduce the number of people entering an intersection after the light turns red. The cost of the redesign must not exceed 10% of the current cost of current traffic signals or the energy needed to operate them.

Students who understand the concepts are able to:

Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.

Apply scientific ideas to solve a design problem for a device that minimizes the force on a macroscopic object during a collision, taking into account possible unanticipated effects.

Use qualitative evaluations and /or algebraic manipulations to design and refine a device that minimizes the force on a macroscopic object during a collision.

Interdisciplinary Connections	
NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively.
technical texts, attending to important distinctions the author	(HS-PS2-1),(HS-PS2-2),(HS-ETS1-1),(HS-ETS1-3),(HS-ETS1-4) MP.2
makes and to any gaps or inconsistencies in the account. (HS-PS2-1)	Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)
RST.11-12.1	MP.4
Integrate and evaluate multiple sources of information presented in	
diverse formats and media (e.g., quantitative data, video,	

Cliffside Park Public Schools

GRADE: 9-12

multimedia) in order to address a (HS-PS2-1) RST.11-12.7 Evaluate the hypotheses, data, au		problems; choose and interpret units	blems and to guide the solution of multi-step consistently in formulas; choose and interpret the a displays (HS-PS2-1) (HS-PS2-2) HSN O.A.1
(HS-ETS1-3) RST.11-12.8 Synthesize information from a range of sources (e.g., texts,		g Define appropriate quantities for the (HS-PS2-1),(HS-PS2-2) HSN.Q.A.2 Choose a level of accuracy appropriat quantities. (HS-PS2-1),(HS-PS2-2) HSN Interpret expressions that represent a	purpose of descriptive modeling. The to limitations on measurement when reporting
when possible. (HS-ETS1-3) RST.1 Conduct short as well as more su	stained research projects to answe rated question) or solve a problem; hen appropriate; synthesize demonstrating understanding of HS-PS2-3),(HS-ETS1-3) al texts to support analysis,	Choose and produce an equivalent for r properties of the quantity represented Create equations and inequalities in or (HS-PS2-1),(HS-PS2-2) HSA.CED.A.1 Create equations in two or more varial quantities; graph equations on coord (HS-PS2-1),(HS-PS2-2) HSA.CED.A.2 Rearrange formulas to highlight a qua solving equations. (HS-PS2-1),(HS-PS2 Graph functions expressed symbolica in simple cases and using technology	antity of interest, using the same reasoning as in
21st Century Life and Careers		, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12	
Technology Standards		3, 8.1.12.A.4, 8.1.12.A.5, 8.1.12.E.1, 8.2	.12.B.1,8.2.12.B.4, 8.2.12.C.5
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding Word walls	Word walls Visual aides	Teacher tutoring Peer tutoring	Curriculum compacting Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities

Cliffside Park Public Schools

GRADE: 9-12

Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-PS2-1: Motion and Stability: Forces and Interactions

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship amongthe net force on a macroscopic object, its mass, and its acceleration.

Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects subject to a net unbalanced force, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.

Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at nonrelativistic speeds.

Evidence Statements: HS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect	
<u>Analyzing data in 9–12 builds on K–8 and progresses to</u>	Newton's second law accurately predicts	Empirical evidence is required to differentiate	
introducing more detailed statistical analysis, the comparison of	changes in the motion of macroscopic	between cause and correlation and make	
data sets for consistency, and the use of models to generate and	objects.	claims about specific causes and effects.	
analyze data.			
Analyze data using tools, technologies, and/or models (e.g.,			
computational, mathematical) in order to make valid and reliable			
scientific claims or determine an optimal design solution.			
Connections to Nature of Science			
Science Models, Laws, Mechanisms, and Theories Explain Natural			
Phenomena			
Theories and laws provide explanations in science.			
Laws are statements or descriptions of the relationships among			
observable phenomena.			
Connections to other DCIs in this grade-band: HS.PS3.C ; HS.ESS2	Connections to other DCIs in this grade-band: HS.PS3.C ; HS.ESS1.A ; HS.ESS1.C ; H.ESS2.C		
Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS3.C			
NJSLS- ELA: RST.11-12.1 , RST.11-12.7 , WHST.11-12.9			
NJSLS- Math: MP.2 , MP.4 , HSN.Q.A.1 , HSN.Q.A.2 , HSN.Q.A.3 , HSA.SSE.A.1 , HSA.SSE.B.3 , HSA.CED.A.1 , HSA.CED.A.2 , HSA.CED.A.4 , HSF-IF.C.7 ,			
HSS-IS.A.1			

5E Model

Cliffside Park Public Schools

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship amongthe net force on a			
	macroscopic object, its mass, and its acceleration.		
	The following PHET Colorado online simulations can be used to introduce students to the topic of force and motion.		
Engage	Forces and Motion Basics (HTML5)		
Anticipatory Set	Force and Motion (Java)		
	Ramp: Force and Motion		
	Applying Newton's Second Law Quantitatively		
	In this lesson, students will solve a variety of problems with free body diagrams and Newton's Second Law.		
	http://betterlesson.com/lesson/635014/applying-newton-s-second-law-quantitatively		
	Combining Newton's Second Law and Kinematics		
Exploration	In this lesson, students will solve a variety of problems with Newton's Second Law and the equations of motion.		
Student Inquiry	http://betterlesson.com/lesson/635295/combining-newton-s-second-law-and-kinematics		
Student inquiry	PUM Lessons:		
	Newton's Second Law- Qualitative		
	Acceleration		
	Newton's Second Law- Quantitative Part 1		
	Newton's Second Law- Quantitative Part 2		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS2.A: Forces and Motion		
	Newton's second law accurately predicts changes in the motion of macroscopic objects.		
	An Introduction to Free Body Diagrams		
	Students use the vector nature of forces to draw free body diagrams.		
Elaboration	http://betterlesson.com/lesson/630798/an-introduction-to-free-body-diagrams		
	Newton's Second Law in 1-D Motion		
Extension Activity	In this lesson, students will be able to identify Newton's Second Law and apply it to 1-dimensional motion.		
	http://betterlesson.com/lesson/631023/newton-s-second-law-in-1-d		
	Newton's Second Law in 2-D Motion		

Cliffside Park Public Schools

GRADE: 9-12

		Students will be able to apply Newton's Second Law to 2-dimensional motions. http://betterlesson.com/lesson/631088/newton-s-second-law-in-2-d	
	Evaluation		Assessr
	Assessment Tasks		In com
ĺ		۱ ۱	correla

Cliffside Park Public Schools

HS-PS2-2: Motion and Stability: Forces and Inte	PHYSICS	
	support the claim that the total momentum of a system of	of objects is conserved when there is no net forc
on the system.	••	
Clarification Statement: Emphasis is on the qua	ntitative conservation of momentum in interactions and the	e qualitative meaning of this principle.
Assessment Boundary: Assessment is limited to	systems of two macroscopic bodies moving in one dimension	on.
Evidence Statements: HS-PS2-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematics and Computational	PS2.A: Forces and Motion	Systems and System Models
<u>Fhinking</u>	Momentum is defined for a particular frame of reference;	When investigating or describing a system, the
Mathematical and computational thinking at	it is the mass times the velocity of the object.	boundaries and initial conditions of the system
the 9–12 level builds on K–8 and progresses to	If a system interacts with objects outside itself, the total	need to be defined.
using algebraic thinking and analysis, a range of	momentum of the system can change; however, any such	
inear and nonlinear functions including	change is balanced by changes in the momentum of	
rigonometric functions, exponentials and	objects outside the system.	
ogarithms, and computational tools for		
statistical analysis to analyze, represent, and		
nodel data. Simple computational simulations		
are created and used based on mathematical		
models of basic assumptions.		
Jse mathematical representations of		
phenomena to describe explanations.		
Connections to other DCIs in this grade-band: H	IS.ESS1.A ; HS.ESS1.C	
Articulation of DCIs across grade-bands: MS.PS	2.A ; MS.PS3.C	
NJSLS- ELA: N/A		
NJSLS- Math: MP.2 , MP.4 , HSN.Q.A.1 , HSN.Q	.A.2 , HSN.Q.A.3 , HSA.CED.A.1 , HSA.CED.A.2 , HSA.CED.A.	4
	5E Model	

Cliffside Park Public Schools

HS-PS2-2. Use mathema	atical representations to support the claim that the total momentum of a system of objects is conserved when there is no net
<u>force on the system.</u>	
	Hands On Activity: Bouncing Balls
Engage	In this activity, students examine how different balls react when colliding with different surfaces. Also, they will have plenty of
Anticipatory Set	opportunity to learn how to calculate momentum and understand the principle of conservation of momentum.
	https://www.teachengineering.org/Activities/View/cub_energy_lesson03_activity3
	Collision Lab : Introduction to One Dimension collisions
	https://phet.colorado.edu/en/contributions/view/3339
	A Collisions Lab
Exploration	Students will be able to estimate the speed of an object by applying momentum conservation to collisions.
Student Inquiry	http://betterlesson.com/lesson/636409/a-collision-lab
Student inquiry	Conservation of Momentum in Explosions
	The purpose of this experiment is to demonstrate conservation of momentum for two cars pushing away from each other.
	http://www-lhs.beth.k12.pa.us/faculty/Hoffman_M/Expt%2004%20Conservation%20of%20Momentum%20Explosions.pdf
	Demonstration Video
	https://www.youtube.com/watch?v=VZsTS1I5swl
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS2.A: Forces and Motion
	Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object.
	If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is
	balanced by changes in the momentum of objects outside the system.
Elaboration	Related Activities:
	http://www.physicsclassroom.com/NGSS-Corner/Force-and-Motion-DCIs-HS
Extension Activity	http://www.ck12.org/ngss/high-school-physical-sciences/motion-and-stability:-forces-and-interactions
Evaluation	Assessment Task A:
Assessment Tasks	

Cliffside Park Public Schools

GRADE: 9-12

Using the mathematical representations included in the above activities, students will support the claim that the momentum of the
system is the same before and after the interaction between the objects in the system, so that momentum of the system is
constant.

Cliffside Park Public Schools

PHYSICS		
HS-PS2-3: Motion and Stability: Forces and Interactions		
HS-PS2-3: Apply scientific and engineering id	eas to design, evaluate, and refine a device that minimizes the	force on a macroscopic object during a
<u>collision.</u>		
Clarification Statement: Examples of evaluati	on and refinement could include determining the success of the	device at protecting an object from damage
and modifying the design to improve it. Exam	ples of a device could include a football helmet or a parachute.	
Assessment Boundary: Assessment is limited	to qualitative evaluations and/or algebraic manipulations.	
Evidence Statements: HS-PS2-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	PS2.A: Forces and Motion	Cause and Effect
<u>Solutions</u>	If a system interacts with objects outside itself, the total	Systems can be designed to cause a desired
Constructing explanations and designing	momentum of the system can change; however, any such	<u>effect.</u>
solutions in 9–12 builds on K–8 experiences	change is balanced by changes in the momentum of objects	
and progresses to explanations and designs	outside the system.	
that are supported by multiple and	ETS1.A: Defining and Delimiting an Engineering Problem	
independent student-generated sources of	Criteria and constraints also include satisfying any	
evidence consistent with scientific ideas,	requirements set by society, such as taking issues of risk	
principles, and theories.	mitigation into account, and they should be quantified to the	
Apply scientific ideas to solve a design	extent possible and stated in such a way that one can tell if a	
problem, taking into account possible	given design meets them. (secondary)	
unanticipated effects.	ETS1.C: Optimizing the Design Solution	
	Criteria may need to be broken down into simpler ones that	
	can be approached systematically, and decisions about the	
	priority of certain criteria over others (trade-offs) may be	
	<u>needed. (secondary)</u>	
Connections to other DCIs in this grade-band: N/A		
Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS3.C		
NJSLS- ELA: WHST.11-12.7		
NJSLS- Math: N/A		

Cliffside Park Public Schools

5E Model		
HS-PS2-3: Apply scientif	fic and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a	
<u>collision.</u>		
Mythbusters Car Crash Force		
Engage	https://www.youtube.com/watch?v=r8E5dUnLmh4	
Anticipatory Set	Test Dummy Hitting Deployed Airbag	
	http://www.gettyimages.com/detail/video/crash-test-dummy-hitting-deployed-airbag-berlin-germany-stock-footage/103250356	
	Crafting a Prototype to Protect An Egg During Freefall	
	Students will utilize their understanding of momentum and collisions to create a prototype that prevents an egg from shattering	
	upon impact.	
	http://betterlesson.com/lesson/637585/crafting-a-prototype-to-protect-an-egg-during-freefall	
Exploration	Hands-on Activity: Design a Bicycle Helmet	
Student Inquiry	In this activity, students are introduced to the biomechanical characteristics of helmets, and are challenged to incorporate them into	
	designs for helmets used for various applications. By doing this, they come to understand the role of enginering associated with	
	safety products. The use of bicycle helmets helps to protect the brain and neck in the event of a crash. To do this effectively, helmets	
	must have some sort of crushable material to absorb the collision forces and a strap system to make sure the protection stays in	
	place. The exact design of a helmet depends on the needs and specifications of the user.	
	https://www.teachengineering.org/Activities/view/bicycle_helmet_activity	
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	PS2.A: Forces and Motion	
Explanation	If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is	
Concepts and Practices	balanced by changes in the momentum of objects outside the system.	
	ETS1.A: Defining and Delimiting an Engineering Problem	
	Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account,	
	and they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them.	
	(secondary)	
	ETS1.C: Optimizing the Design Solution	

Cliffside Park Public Schools

GRADE: 9-12

	Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of
	certain criteria over others (trade-offs) may be needed. (secondary)
	Related Activities:
Elaboration	http://www.ck12.org/ngss/high-school-physical-sciences/motion-and-stability:-forces-and-interactions
Extension Activity	http://www.physicsclassroom.com/NGSS-Corner/Force-and-Motion-DCIs-HS
Evaluation	Assessment Task A: In this above activities, teachers should evaluate students on their application of the engineering process which
Assessment Tasks	includes design, evaluation and refinement.

Cliffside Park Public Schools

	PHYSICS	
HS-ETS1-2 Engineering Design		
HS-ETS1-2: Design a solution to a complex real-work	<mark>d problem by breaking it down into smaller, more manageable</mark>	e problems that can be solved through
engineering.		
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution	
Constructing explanations and designing solutions in	Criteria may need to be broken down into simpler ones that	
9–12 builds on K–8 experiences and progresses to	can be approached systematically, and decisions about the	
explanations and designs that are supported by	priority of certain criteria over others (trade-offs) may be	
multiple and independent student-generated	needed.	
sources of evidence consistent with scientific ideas,		
principles and theories.		
Design a solution to a complex real-world problem,		
based on scientific knowledge, student-generated		
sources of evidence, prioritized criteria, and tradeoff		
considerations.		
Connections to other DCIs in this grade-band: Physic		
Articulation of DCIs across grade-bands: MS.ETS1.A	; MS.ETS1.B ; MS.ETS1.C	
NJSLS- ELA: N/A		
NJSLS- Math: MP.4		

Cliffside Park Public Schools

including cost, safety, reliability, and aesthetics a Clarification Statement: N/A		<u>d trade-offs that account for a range of constraints,</u> mental impacts.
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories. Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.	Connections to Engineering, Technology, and Application of Science Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated Analysis of costs and benefits is a critical aspect of decision about technology.
Connections to other DCIs in this grade-band: Ea Articulation of DCIs across grade-bands: MS.ETS1	• •	

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Content Area: Physics

Pacing: 20 Instructional days

Unit 2: Fundamental Forces
Essential Question
acts and within systems of objects?

Unit 2: Overview

How can one explain and predict interactions between objects and within systems of objects?

Student Learning Objectives (Performance Expectations)

HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic forces between objects.

Unit Summary

In this unit of study, students plan and conduct investigations and apply scientific ideas to make sense of Newton's law of gravitation and Coulomb's Law. They apply these laws to describe and predict the gravitational and electrostatic forces between objects. The crosscutting concept of patterns is called out as an organizing concept for this disciplinary core idea. Students are expected to demonstrate proficiency in planning and conducting investigations and applying scientific ideas to demonstrate an understanding of core ideas.

Technical Terms

Newton's Law of Universal Gravitation, Coulomb's Law, gravitational force, electrostatic force, mechanics, natural phenomena, qualitative, velocity, acceleration

Formative Assessment Measures

Part A: Why are people on Earth stuck here while astronauts appear to be weightless?

How does the weight (force of gravity) of an astronaut of a specific mass (100 kg including gear) change at specific distances from Earth as the shuttle flies toward the moon?

Students who understand the concepts are able to:

Use mathematical representations of phenomena to describe or explain how gravitational force is proportional to mass and inversely proportional to distance squared.

Demonstrate how Newton's Law of Universal Gravitation provides explanations for observed scientific phenomena.

Observe patterns at different scales to provide evidence for gravitational forces between two objects in a system with two objects.

Part B: How far away can my finger be from my sister or brother if I want to zap them with static electricity?

Students who understand the concepts are able to:

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Use mathematical representations of phenomena to describe or explain how electrostatic force is proportional to charge and inversely proportional to distance squared.

Use mathematical representations of Coulomb's Law to predict the electrostatic forces between two objects in systems with two objects.

Observe patterns at different scales to provide evidence for electrostatic forces between two objects in systems with two objects.

Interdisciplinary Connections				
NJSLS- ELA		NJSLS- Mathematics		
		Choose a level of accuracy appropriate to limitations on measurement when reporting		
		quantities. (HS-PS2-4) HSN.Q.A.3		
		Interpret expressions that represent a qua	ntity in terms of its context. (HS-PS2-4) HSA.SSE.A.1	
		Choose and produce an equivalent form of an expression to reveal and explain properties of the		
		quantity represented by the expression. (H	HS-PS2-4) HSA.SSE.B.3	
N/A		Reason abstractly and quantitatively. (HS-I	PS2-4) MP.2	
		Model with mathematics. (HS-PS2-4) MP.4	ł	
		Use units as a way to understand problem	s and to guide the solution of multi-step problems;	
		choose and interpret units consistently in	formulas; choose and interpret the scale and the origin	
		in graphs and data displays. (HS-PS2-4) HSN.Q.A.1		
		Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-4) HSN.Q.A.2		
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.			
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12		12	
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8.1.12.A.4, 8.1.12.A.5, 8.1.12.E.1, 8.2.12.B.1,8.2.12.B.4, 8.2.12.C.5		
		Modifications		
English Language Learners	Special Education	ducation At-Risk Gifted and Talented		
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers Tiered activities		
Think alouds	Leveled readers	Extended time	Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks	

Cliffside Park Public Schools

GRADE: 9-12

Think-pair- share	Answer masking	Self-directed activities
Visual aides	Answer eliminator	
Modeling	Highlighter	
Cognates	Color contrast	

Cliffside Park Public Schools

	PHYSICS	
HS-PS2-4: Motion and Stability: Forces and Interactions HS-PS2-4: Use mathematical representations of Newton's Law of	Gravitation and Coulomb's Law to describe and pr	redict the gravitational and
electrostatic forces between objects.	<u> </u>	
Clarification Statement: Emphasis is on both quantitative and co	nceptual descriptions of gravitational and electric f	ields.
Assessment Boundary: Assessment is limited to systems with tw	o objects.	
Evidence Statements: HS-PS2-4		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematics and Computational Thinking	PS2.B: Types of Interactions	Patterns
Mathematical and computational thinking at the 9–12 level builds	Newton's law of universal gravitation and	Different patterns may be observed a
on K–8 and progresses to using algebraic thinking and analysis, a	Coulomb's law provide the mathematical models to	each of the scales at which a system i
range of linear and nonlinear functions including trigonometric	describe and predict the effects of gravitational	studied and can provide evidence for
functions, exponentials and logarithms, and computational tools	and electrostatic forces between distant objects.	causality in explanations of
for statistical analysis to analyze, represent, and model data.	Forces at a distance are explained by fields	<u>phenomena.</u>
Simple computational simulations are created and used based on	(gravitational, electric, and magnetic) permeating	
mathematical models of basic assumptions.	space that can transfer energy through space.	
Use mathematical representations of phenomena to describe	Magnets or electric currents cause magnetic fields;	
explanations.	electric charges or changing magnetic fields cause	
Connections to Nature of Science	<u>electric fields.</u>	
Science Models, Laws, Mechanisms, and Theories Explain		
Natural Phenomena		
Theories and laws provide explanations in science.		
Laws are statements or descriptions of the relationships among		
observable phenomena.		
Connections to other DCIs in this grade-band: HS.PS3.A ; HS.ESS1	.В	
Articulation of DCIs across grade-bands: MS.PS2.B ; MS.ESS1.B		
NJSLS- ELA: N/A		
NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3, HS	A.SSE.A.1, HSA.SSE.B.3	
	5E Model	

Cliffside Park Public Schools

HS-PS2-4: Use mathem	atical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and	
electrostatic forces bet	ween objects.	
Engage	The following PHET Colorado online simulations can be used to introduce Newton's Law of Gravitation and Coulomb's Law.	
Anticipatory Set	https://phet.colorado.edu/en/simulation/gravity-force-lab	
	Gravitational Fields	
Exploration	http://www.physicsclassroom.com/NGSS-Corner/Activity-Descriptions/Gravitational-Fields-Description	
Student Inquiry	If activity fails to open try using another browser	
	Coulomb's Law Interactive	
	http://www.physicsclassroom.com/NGSS-Corner/Activity-Descriptions/Coulombs-Law	
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Concepts and Practices		
concepts and tractices	Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of	
	gravitational and electrostatic forces between distant objects.	
	Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through	
	space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.	
	Electrostatic and Coulomb's Law: Lab	
Elaboration	http://www.myips.org/cms/lib8/IN01906626/Centricity/Domain/8123/Coulombs%20Law%20E1.pdf	
Extension Activity	Related Activities	
	http://www.ck12.org/ngss/high-school-physical-sciences/motion-and-stability:-forces-and-interactions/	
Evaluation	Assessment Task A: Using the two simulation activities above, teachers will evaluate the students' descriptions and predictions of	
Assessment Tasks	electric or gravitational forces between objects.	

Cliffside Park Public Schools

Unit 3: Overview		
Unit 3: Kepler's Laws		
Content Area: Physics		
Pacing: 15 Instructional days		
	Essential Question	
How was it possible for NASA to intentionally fly into Comet	Tempel 1?	
Student Le	earning Objectives (Performance Expectations)	
HS-ESS1-4: Use mathematical or computational representation	ions to predict the motion of orbiting objects in the solar system.	
	Unit Summary	
universe. The crosscutting concepts of scale, proportion, and	ational thinking to examine the processes governing the workings of the solar system and d quantity are called out as organizing concepts for these disciplinary core ideas. Students are and computational thinking and to use this practice to demonstrate understanding of core	
	Technical Terms	
Kepler's Laws		
	Formative Assessment Measures	
Part A: How was it possible for NASA to intentionally fly into	Comet Tempel 1?	
Students who understand the concepts are able to:		
Use mathematical or computational representations to prec	lict the motion of orbiting objects in the solar system.	
Use mathematical and computational representations of Ne	wtonian gravitational laws governing orbital motion that apply to moons and human-made	
satellites.		
Use algebraic thinking to examine scientific data and predict		
Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
N/A	Reason abstractly and quantitatively.(HS-ESS1-4) MP.2	
	Model with mathematics.(HS-ESS1-4) MP.4	
	Use units as a way to understand problems and to guide the solution of multi-step	
	problems; choose and interpret units consistently in formulas; choose and interpret the	
	scale and the origin in graphs and data displays.(HS-ESS1-4) HSN-Q.A.1	

Cliffside Park Public Schools

GRADE: 9-12

		Define appropriate quantities for the purpose of HSN-Q.A.2 Choose a level of accuracy appropriate to limit quantities.(HS-ESS1-4) HSN-Q.A.3 Interpret expressions that represent a quantity HSA-SSE.A.1 Create equations in two or more variables to re- graph equations on coordinate axes with labels Rearrange formulas to highlight a quantity of in solving equations.(HS-ESS1-4) HSA-CED.A.4	ations on measurement when reporting v in terms of its context.(HS-ESS1-4) epresent relationships between quantities; s and scales.(HS-ESS1-4) HSA-CED.A.2
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12.	.A.3, 8.1.12.A.4, 8.1.12.A.5, 8.1.12.E.1, 8.2.12.B.	1,8.2.12.B.4, 8.2.12.C.5
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

	PHYSICS	
HS-ESS1-4: Earth's Place in the Universe	presentations to predict the motion of orbiting ob	insts in the solar system
	gravitational laws governing orbital motions, which	· · · · · · · · · · · · · · · · · · ·
and moons.		rupply to human made satellites as well as planets
Assessment Boundary: Mathematical representation	ons for the gravitational attraction of bodies and Ke	pler's Laws of orbital motions should not deal with
more than two bodies, nor involve calculus.	Ű.	
Evidence Statements: HS-ESS1-4		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematical and Computational Thinking	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
Mathematical and computational thinking in 9–12	Kepler's laws describe common features of the	Algebraic thinking is used to examine scientific data
builds on K–8 experiences and progresses to using	motions of orbiting objects, including their	and predict the effect of a change in one variable on
algebraic thinking and analysis, a range of linear	elliptical paths around the sun. Orbits may change	another (e.g., linear growth vs. exponential growth).
and nonlinear functions including trigonometric	due to the gravitational effects from, or collisions	Connections to Engineering, Technology, and
functions, exponentials and logarithms, and	with, other objects in the solar system.	Applications of Science
computational tools for statistical analysis to		Interdependence of Science, Engineering, and
analyze, represent, and model data. Simple		<u>Technology</u>
computational simulations are created and used		Science and engineering complement each other in
based on mathematical models of basic		the cycle known as research and development (R&D
assumptions.		Many R&D projects may involve scientists, engineer
Use mathematical or computational		and others with wide ranges of expertise.
representations of phenomena to describe		
explanations.		
Connections to other DCIs in this grade-band: HS.F	PS2.B	
Articulation of DCIs across grade-bands: MS.PS2.A	; MS.PS2.B ; MS.ESS1.A ; MS.ESS1.B	
NJSLS- ELA: N/A		
NJSLS- Math: MP.2, MP.4, HSN-Q.A.1, HSN-Q.A.2,	HSN-Q.A.3, HSA-SSE.A.1, HSA-CED.A.2, HSA-CED.A	.4
	5E Model	
HS-ESS1-4: Use mathematical or computational re	presentations to predict the motion of orbiting ob	jects in the solar system.

Cliffside Park Public Schools

Engage	Video: Gravity Visualized
Anticipatory Set	https://www.youtube.com/watch?v=MTY1Kje0yLg
	Gravity, Orbits and Kepler's Law
	https://phet.colorado.edu/en/contributions/view/3874
	Satellite Motion Lab
	In this activity, students will experiment with satellite motion using an interactive simulation, gaining an understanding of Kepler's
	Laws of Satellite Motion and Newton's Synthesis.
Exploration	https://phet.colorado.edu/en/contributions/view/3709
Student Inquiry	Going Full Circle on Gravity and Orbits- Day 1
Student inquiry	In this lesson, students apply the circular motion equations to Newton's Universal Law of Gravity to derive circular orbit equations.
	http://betterlesson.com/lesson/637802/going-full-circle-on-gravity-and-orbits-day-1
	Going Full Circle on Gravity and Orbits- Day 2
	In this lesson, students determine that satellites in a certain orbit are geostationary based on observations and what they know
	about orbital periods.
	http://betterlesson.com/lesson/638515/going-full-circle-on-gravity-and-orbits-day-2
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
concepts and machees	ESS1.B: Earth and the Solar System
	Kepler's laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits
	may change due to the gravitational effects from, or collisions with, other objects in the solar system.
	<u>Tides</u>
Elaboration	Students will graph the tides in a region over a multi-day period to explain the factors which influence tides on the Earth and draw
Extension Activity	or identify the positions of the Earth, Moon, and Sun given specific tidal conditions.
	http://betterlesson.com/lesson/641869/tides
Evaluation	Assessment Task A: In the activities above, students will use mathematical representations to predict orbital changes in the solar
Assessment Tasks	system.

Cliffside Park Public Schools

GRADE: 9-12

Cliffside Park Public Schools

Unit 4: Overview	
Unit 4: Energy	
ontent Area: Physics	
acing: 25 Instructional days	
Essential Question	
ow is energy transferred and conserved?	
Student Learning Objectives (Performance Expectations)	
S-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated wi	<u>th the</u>
otions of particles (objects) and energy associated with the relative positions of particles (objects).	
S-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the oth	<u>er</u>
emponent(s) and energy flows in and out of the system are known.	
S-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.	
S-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal ne	<u>eds and</u>
ants.	
S-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved thro	ugh
ngineering.	
S-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, i	ncluding
ost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.	
S-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and const	traints
n interactions within and between systems relevant to the problem.	
Unit Summary	
this unit of study, students develop and use models, plan and carry out investigations, use computational thinking and design solutions as they mense of the disciplinary core idea. The disciplinary core idea of Energy is broken down into sub core ideas: definitions of energy, conservation of energy transfer, and the relationship between energy and forces. Energy is understood as a quantitative property of a system that depends on the red interactions of matter, and the total change of energy in any system is equal to the total energy transferred into and out of the system. Student emonstrate their understanding of engineering principles when they design, build, and refine devices associated with the conversion of energy. The osscutting concepts of cause and effect, systems and systems models, energy and matter, and the influence of science, engineering, and technolo becety and the natural world are further developed in the performance expectations. Students are expected to demonstrate proficiency in develop	ergy and notion s also e gy on

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

using models, planning and carry out investigations, using computational thinking and designing solutions, and they are expected to use these practices to demonstrate understanding of core ideas. **Technical Terms** Energy, conservation of energy, energy transfer, elastic potential energy, gravitational potential energy, kinetic energy, thermal energy, macroscopic scale, computational model, radiation, Rube Goldberg machines, quantitative property, quantifiable **Formative Assessment Measures** Part A: I have heard about it since kindergarten but what is energy? Students who understand the concepts are able to: Develop and use models based on evidence to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with motions of particles (objects) and energy associated with the relative position of particles (objects). Develop and use models based on evidence to illustrate that energy cannot be created or destroyed. It only moves between one place and another place, between objects and/or fields, or between systems. Use mathematical expressions to quantify how the stored energy in a system depends on its configuration (e.g., relative positions of charged particles, compressions of a spring) and how kinetic energy depends on mass and speed. Use mathematical expressions and the concept of conservation of energy to predict and describe system behavior. Part B: How can we use mathematics to prove what happens in an abiotic and biotic systems? Students who understand the concepts are able to: Use basic algebraic expressions or computations to create a computational model to calculate the change in the energy of one component in a system (limited to two or three components) when the change in energy of the other component(s) and energy flows in and out of the system are known. Explain the meaning of mathematical expressions used to model the change in the energy of one component in a system (limited to two or three components) when the change in energy of the other component(s) and out of the system are known. Part C: Superstorm Sandy devastated the New Jersey Shore and demonstrated to the public how vulnerable our infrastructure is. Using your understandings of energy, design a low technology system that would insure the availability of energy to residents if catastrophic damage to the grid occurs again. Students who understand the concepts are able to: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations. Analyze a device to convert one form of energy into another form of energy by specifying criteria and constraints for successful solutions. Use mathematical models and/or computer simulations to predict the effects of a device that converts one form of energy into another form of energy. Interdisciplinary Connections NJSLS- ELA **NJSLS-** Mathematics

Cliffside Park Public Schools

scientific procedures/ experimen	ts, or technical processes.(HS-PS1-2) WHST.9-12.2	Use units as a way to unders	tand problems and to guide the solution of	
	is needed by planning, revising, editing, rewriting,		and interpret units consistently in formulas;	
	g on addressing what is most significant for a	• •	le and the origin in graphs and data	
	S-PS1-2),(HS-ETS1-3) WHST.9-12.5	displays.(HS-PS1-2),(HS-PS1-3		
	stained research projects to answer a question			
	ion) or solve a problem; narrow or broaden the			
	size multiple sources on the subject,			
demonstrating understanding of				
investigation.(HS-PS1-3),(HS-ETS1	-			
• • • • • • • • • • • • • • • • • • • •	n multiple authoritative print and digital sources,			
using advanced searches effectively; assess the strengths and limitations of each				
source in terms of the specific tas	sk, purpose, and audience; integrate information			
into the text selectively to mainta	in the flow of ideas, avoiding plagiarism and			
overreliance on any one source a	nd following a standard format for			
citation.(HS-PS1-3),(HS-ETS1-3),(H	HS-ETS1-1),(HS-ETS1-3) WHST.11-12.8			
Draw evidence from informational texts to support analysis, reflection, and				
research.(HS-PS1-3),(HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9				
Make strategic use of digital med	ia (e.g., textual, graphical, audio, visual, and			
interactive elements) in presenta	tions to enhance understanding of findings,			
reasoning, and evidence and to a	dd interest. (HS-PS1-4) SL.11-12.5			
Core Instructional Materials	Core Instructional Materials Can include: Textbooks Series, Lab Materials, etc.			
21st Century Life and Careers	1st Century Life and Careers CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8, CRP 9, CRP 11, CRP 12			
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8.1.12.A.4, 8.1	.12.A.5, 8.1.12.E.1, 8.2.12.B.1	,8.2.12.B.4, 8.2.12.C.5	
	Modification	ns		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
	•			

Cliffside Park Public Schools

Word walls	Visual aides Peer tutoring Challenge		Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking Self-directed activities		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

PHYSICS					
HS-PS3-2: Energy					
-	e that energy at the macroscopic scale can be accounted for as a co	ombination of energy associated with th			
	ciated with the relative positions of particles (objects).				
	ena at the macroscopic scale could include the conversion of kinetic				
	earth, and the energy stored between two electrically-charged plates	s. Examples of models could include			
diagrams, drawings, descriptions, and compute Assessment Boundary: N/A					
Evidence Statements: HS-PS3-2					
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts			
Developing and Using Models		Energy and Matter			
Modeling in 9–12 builds on K–8 and	Energy is a quantitative property of a system that depends on the	Energy cannot be created or			
progresses to using, synthesizing, and		destroyed—only moves between one			
leveloping models to predict and show	system. That there is a single quantity called energy is due to the	place and another place, between obje			
elationships among variables between	fact that a system's total energy is conserved, even as, within the	and/or fields, or between systems.			
systems and their components in the natural	system, energy is continually transferred from one object to				
and designed worlds.	another and between its various possible forms.				
Develop and use a model based on evidence	At the macroscopic scale, energy manifests itself in multiple ways,				
o illustrate the relationships between systems	such as in motion, sound, light, and thermal energy.				
or between components of a system.	These relationships are better understood at the microscopic scale,				
	at which all of the different manifestations of energy can be				
	modeled as a combination of energy associated with the motion of				
	particles and energy associated with the configuration (relative				
	position of the particles). In some cases the relative position				
	energy can be thought of as stored in fields (which mediate				
	interactions between particles). This last concept includes				
	radiation, a phenomenon in which energy stored in fields moves				
Connections to other DCIs in this grade-band:	across space.				

Articulation of DCIs acro	ss grade-bands: MS.PS1.A ; MS.PS2.B ; MS.PS3.A ; MS.PS3.C		
NJSLS- ELA: SL.11-12.5			
NJSLS- Math: MP.2, MP.	4		
	5E Model		
HS-PS3-2: Develop and ι	use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the		
motions of particles (obj	jects) and energy associated with the relative positions of particles (objects).		
Engage	Video: Energy Lost When a Ball Bounces (Can be done as classroom demonstration)		
Anticipatory Set	https://www.youtube.com/watch?v=ZSOxVwTv58Q		
	Skatepark Energy		
	Students learn the concepts of kinetic and potential energy as they explore a skateboard simulation.		
	http://betterlesson.com/lesson/638233/skate-park-energy		
	Skatepark Energy Revisited		
Exploration	Students determine how friction and the shape of the ramp impact the transformation of potential into kinetic energy.		
Student Inquiry	http://betterlesson.com/lesson/638235/skate-park-energy-revisited		
Student inquiry	Venn Diagram of Kinetic and Potential Energies		
	Students compare and contrast kinetic energy and potential energy by creating a Venn Diagram of the two types of energy.S		
	http://betterlesson.com/lesson/638234/venn-diagram-of-kinetic-and-potential-energies		
	Simple Pendulum Lab		
	https://phet.colorado.edu/en/contributions/view/3591		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	PS3.A: Definitions of Energy		
Concepts and Practices	Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that		
	system. That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the		
	system, energy is continually transferred from one object to another and between its various possible forms.		
	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.		
	These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be		
	modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

	position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate		
	interactions between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across		
	<u>space.</u>		
	Swinging Pendulum		
Elaboration	https://www.teachengineering.org/Activities/view/cub_energy_lesson03_activity2_		
Extension Activity	Related Activities		
	http://www.ck12.org/ngss/high-school-physical-sciences/energy/		
	Assessment Task A: Energy Skate Park- Bar Graph Model		
Evaluation	http://betterlesson.com/lesson/resource/3218871/energy-skate-park?from=resource_image		
Assessment Tasks	Assessment Task B: Kinetic and Potential Energy Venn Diagram		
	http://betterlesson.com/lesson/638234/venn-diagram-of-kinetic-and-potential-energies		

PHYSICS HS-PS3-1: Energy HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other component(s) and energy flows in and out of the system are known. **Clarification Statement:** Emphasis is on explaining the meaning of mathematical expressions used in the model. Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields. Evidence Statements: HS-PS3-1 **Disciplinary Core Ideas** Science & Engineering Practices **Cross-Cutting Concepts PS3.A:** Definitions of Energy Systems and System Models Using Mathematics and Computational Energy is a quantitative property of a system that depends on Models can be used to predict the behavior of a Thinking Mathematical and computational thinking at the motion and interactions of matter and radiation within system, but these predictions have limited that system. That there is a single quantity called energy is precision and reliability due to the assumptions the 9–12 level builds on K–8 and progresses to using algebraic thinking and analysis, a due to the fact that a system's total energy is conserved, even and approximations inherent in models. range of linear and nonlinear functions as, within the system, energy is continually transferred from **Connections to Nature of Science** including trigonometric functions, one object to another and between its various possible Scientific Knowledge Assumes an Order and exponentials and logarithms, and **Consistency in Natural Systems** forms.

Cliffside Park Public Schools

GRADE: 9-12

computational tools for st	tatistical analysis to	PS3.B: Conservation of Energy and Energy Transfer	Science assumes the universe is a vast single
analyze, represent, and m	nodel data. Simple	Conservation of energy means that the total change of	system in which basic laws are consistent.
computational simulation	ns are created and	energy in any system is always equal to the total energy	
used based on mathemat	tical models of basic	transferred into or out of the system.	
assumptions.		<u>Energy cannot be created or destroyed, but it can be</u>	
Create a computational m	nodel or simulation	transported from one place to another and transferred	
of a phenomenon, design	ned device, process,	between systems.	
<u>or system.</u>		Mathematical expressions, which quantify how the stored	
		energy in a system depends on its configuration (e.g. relative	
		positions of charged particles, compression of a spring) and	
		how kinetic energy depends on mass and speed, allow the	
		concept of conservation of energy to be used to predict and	
		describe system behavior.	
		The availability of energy limits what can occur in any system.	
Connections to other DCI	Is in this grade-band	d: HS.PS1.B ; HS.LS2.B ; HS.ESS2.A	
Articulation of DCIs acros	ss grade-bands: MS	PS3.A ; MS.PS3.B ;MS.ESS2.A	
NJSLS- ELA: SL.11-12.5			
NJSLS- Math: MP.2, MP.4	4, HSN.Q.A.1, HSN.C	Q.A.2, HSN.Q.A.3	
		5E Model	
HS-PS3-1: Create a comp	utational model to	calculate the change in the energy of one component in a sys	tem when the change in energy of the other
component(s) and energy	y flows in and out o	f the system are known.	
Engage	Ballistic Pendulum I	Physics	
Anticipatory Set	<u>https://www.youtu</u>	be.com/watch?v=I87Dr2IJEOk	
	The Springy Pen Lat	2	
	Students will be able to prove conservation of energy in a pen's spring.		
Exploration	http://betterlesson.com/lesson/634088/the-springy-pen-lab		
	The Conservation of Energy Pendulum		
	The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to		
	quantitatively compare the two forms of mechanical energy to determine if the total mechanical energy is conserved.		
	http://www.austing	c.edu/mmcgraw/Labs_1401/8c-Con%20of%20Energy-Pendulu	<u>ım-RGC-1-15-09.pdf</u>

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 9-12

Ramp and Review In this hands-on activity—rolling a ball down an incline and having it collide into a cup—the concepts of mechanical energy, work and power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that describe these energy of motion concepts to calculate unknown variables and review the relationships between these concepts. https://www.teachengineering.org/Activities/view/cub_energy_lesson05_activity2_ In these Teachei Student Topics t PS3.A: [Energy system. Explanation system, PS3.B: 0 Concepts and Practices Conserv out of t Energy Mathen charged of energy The ava Energy and the Pogo Stick Students learn about the conservation of energy with the inclusion of elastic potential energy. They use pogo sticks to experience Elaboration the elastic potential energy and its conversion to gravitational potential energy. Extension Activity https://www.teachengineering.org/Activities/view/van hybrid design activity3 Students use the computational model to calculate the changes in the energy of one component of the system when changes in the energy of the other components and the energy flows are known. Evaluation Assessment Task A: Springy Pen Lab Assessment Tasks Computational models

Cliffside Park Public Schools

GRADE: 9-12

Assessment Task B: The Conservation of Energy Pendulum
Data analysis portion of lab report to create computational models
Assessment Task C: Ramp and Review Worksheet
http://content.teachengineering.org/content/cub_/activities/cub_energy/cub_energy_lesson05_activity2_worksheet.pdf

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-PS3-3: Energy

HS-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.

Clarification Statement: Emphasis is on both qualitative and quantitative evaluations of devices. Examples of devices could include Rube Goldberg devices, wind turbines, solar cells, solar ovens, and generators. Examples of constraints could include use of renewable energy forms and efficiency.

Assessment Boundary: Assessment for quantitative evaluations is limited to total output for a given input. Assessment is limited to devices constructed with materials provided to students.

Evidence Statements: HS-PS3-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing	PS3.A: Definitions of Energy	Energy and Matter	
<u>Solutions</u>	At the macroscopic scale, energy manifests itself in	Changes of energy and matter in a system can be	
Constructing explanations and designing	multiple ways, such as in motion, sound, light, and	described in terms of energy and matter flows into, out	
solutions in 9–12 builds on K–8 experiences	thermal energy.	of, and within that system.	
and progresses to explanations and designs	PS3.D: Energy in Chemical Processes	Connections to Engineering, Technology, and	
that are supported by multiple and	Although energy cannot be destroyed, it can be	Applications of Science	
independent student-generated sources of	converted to less useful forms—for example, to	Influence of Science, Engineering and Technology on	
evidence consistent with scientific ideas,	thermal energy in the surrounding environment.	Society and the Natural World	
principles, and theories.	ETS1.A: Defining and Delimiting an Engineering	Modern civilization depends on major technological	
Design, evaluate, and/or refine a solution to	<u>Problem</u>	systems. Engineers continuously modify these	
a complex real-world problem, based on	Criteria and constraints also include satisfying any	technological systems by applying scientific knowledge	
<u>scientific knowledge, student-generated</u>	requirements set by society, such as taking issues of	and engineering design practices to increase benefits	
sources of evidence, prioritized criteria, and	risk mitigation into account, and they should be	while decreasing costs and risks.	
tradeoff considerations.	quantified to the extent possible and stated in such a		
	way that one can tell if a given design meets them.		
	(secondary)		
Connections to other DCIs in this grade-band: HS.ESS3.A			
Articulation of DCIs across grade hands, MS DS2 A , MS DS2 D , MS ESS2 A			

Articulation of DCIs across grade-bands: MS.PS3.A ; MS.PS3.B ; MS.ESS2.A

Cliffside Park Public Schools

NJSLS- ELA: WHST.9-12.7	
NJSLS- Math: MP.2, MP.4	I, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3
	5E Model
HS-PS3-3: Design, build	and refine a device that works within given constraints to convert one form of energy into another form of energy.
	Roller Coaster Physics
Engage	https://www.youtube.com/watch?v=-dpBVtAbKJU
Anticipatory Set	Kingda Ka- Front Row
	https://www.youtube.com/watch?v=HN8nv4tVFuA
	Roller Coaster Design: Day 1
	Students design their own roller coasters, calculate potential energy and apply conservation of energy to calculate the velocities
	at key points of the ride.
	http://betterlesson.com/lesson/638238/roller-coaster-design-day-1
	Roller Coaster Design: Day 2
Exploration	Students design their own roller coasters and calculate important aspects of the ride like velocities, work and power of the motor,
Student Inquiry	and braking force.
	http://betterlesson.com/lesson/639206/roller-coaster-design-day-2
	Rube Goldberg Contraptions
	https://www.teachingchannel.org/videos/rube-goldberg-contraptions
	Introduction Video:
	https://www.youtube.com/watch?v=ieQSiDnOhzY
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS3.A: Definitions of Energy
concepts and ructices	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.
	PS3.D: Energy in Chemical Processes
	Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the
	surrounding environment.

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

	ETS1.A: Defining and Delimiting an Engineering Problem- Criteria and constraints also include satisfying any requirements set by	
	society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in	
	such a way that one can tell if a given design meets them. (secondary)	
Elaboration	Related Activities:	
Extension Activity	http://www.ck12.org/ngss/high-school-physical-sciences/energy/	
	Assessment Task A: Roller Coaster	
	When creating their models, students should describe and quantify (when appropriate) prioritized criteria and constraints for the	
Evaluation	design of the device, along with the tradeoffs implicit in these design solutions.	
Assessment Tasks	<u>3D Model Rubric</u>	
	Rube Goldberg Contraption	
	Evaluate student design using the 3D model rubric.	

PHYSICS HS-ETS1-1 Engineering Design HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants. Clarification Statement: N/A Assessment Boundary: N/A Evidence Statements: HS-ETS1-1 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts** Asking Questions and Defining Problems ETS1.A: Defining and Delimiting Engineering Connections to Engineering, Technology, and Asking questions and defining problems in **Applications of Science** Problems Criteria and constraints also include satisfying any Influence of Science, Engineering, and Technology on 9–12 builds on K–8 experiences and progresses to formulating, refining, and requirements set by society, such as taking issues of Society and the Natural World evaluating empirically testable questions and risk mitigation into account, and they should be New technologies can have deep impacts on society design problems using models and quantified to the extent possible and stated in such a and the environment, including some that were not way that one can tell if a given design meets them. anticipated. Analysis of costs and benefits is a critical simulations. Humanity faces major global challenges today, such as aspect of decisions about technology. the need for supplies of clean water and food or for

Cliffside Park Public Schools

GRADE: 9-12

Analyze complex real-world problems by	energy sources that minimize pollution, which can be	
specifying criteria and constraints for	addressed through engineering. These global	
successful solutions.	challenges also may have manifestations in local	
	communities.	
Connections to other DCIs in this grade-band	: Physical Science: HS-PS2-3, HS-PS3-3	
Articulation of DCIs across grade-bands: MS.I	TS1.A	
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9		
NJSLS- Math: MP.2, MP.4		

Cliffside Park Public Schools

PHYSICS		
HS-ETS1-2 Engineering Design		
HS-ETS1-2: Design a solution to a complex real-work	<mark>d problem by breaking it down into smaller, more manageable</mark>	e problems that can be solved through
engineering.		
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution	
Constructing explanations and designing solutions in	Criteria may need to be broken down into simpler ones that	
9–12 builds on K–8 experiences and progresses to	can be approached systematically, and decisions about the	
explanations and designs that are supported by	priority of certain criteria over others (trade-offs) may be	
multiple and independent student-generated	needed.	
sources of evidence consistent with scientific ideas,		
principles and theories.		
Design a solution to a complex real-world problem,		
based on scientific knowledge, student-generated		
sources of evidence, prioritized criteria, and tradeoff		
considerations.		
Connections to other DCIs in this grade-band: Physic		
Articulation of DCIs across grade-bands: MS.ETS1.A	; MS.ETS1.B ; MS.ETS1.C	
NJSLS- ELA: N/A		
NJSLS- Math: MP.4		

Cliffside Park Public Schools

including cost, safety, reliability, and aesthetics a Clarification Statement: N/A		<u>d trade-offs that account for a range of constraints,</u> mental impacts.
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories. Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.	Connections to Engineering, Technology, and Application of Science Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated Analysis of costs and benefits is a critical aspect of decision about technology.
Connections to other DCIs in this grade-band: Ea Articulation of DCIs across grade-bands: MS.ETS1	• •	

Cliffside Park Public Schools

PHYSICS			
HS-ETS1-4 Engineering Design			
HS-ETS1-4: Use a computer simulation to model the in	npact of proposed solutions to a complex rea	I-world problem with numerous criteria and	
constraints on interactions within and between system	ns relevant to the problem.		
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-4			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Using Mathematics and Computational Thinking	ETS1.B: Developing Possible Solutions	Systems and Systems Models	
Mathematical and computational thinking in 9-12	Both physical models and computers can be	Systems and System Models Models (e.g., physical,	
builds on K-8 experiences and progresses to using	<u>used in various ways to aid in the</u>	mathematical, computer models) can be used to	
algebraic thinking and analysis, a range of linear and	engineering design process. Computers are	simulate systems and interactions—including energy,	
nonlinear functions including trigonometric functions,		matter, and information flows— within and between	
exponentials and logarithms, and computational tools	running simulations to test different ways of	systems at different scales.	
for statistical analysis to analyze, represent, and model	solving a problem or to see which one is		
data. Simple computational simulations are created	most efficient or economical; and in making		
and used based on mathematical models of basic	a persuasive presentation to a client about		
assumptions.	how a given design will meet his or her		
Use mathematical models and/or computer	needs.		
simulations to predict the effects of a design solution			
on systems and/or the interactions between systems.			
Connections to other DCIs in this grade-band: Earth an	d Space Science: HS-ESS3-2, HS-ESS3-4 Life So	cience: HS-LS2-7, HS-LS4-6	
Articulation of DCIs across grade-bands: MS.ETS1.A ; N	AS.ETS1.B ; MS.ETS1.C		
NJSLS- ELA: N/A			
NJSLS- Math: MP.2, MP.4			

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Unit 5: Overview

Unit 5: Physics of the Geosphere

Content Area: Physics

Pacing: 15 Instructional days

Essential Question

How much force and energy is needed to move a continent?

Student Learning Objectives (Performance Expectations)

HS-ESS2-1: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

HS-ESS2-3: Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

HS-ESS1-5: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

HS-ESS2-2: Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.

Unit Summary

In this unit of study, students construct explanations for the scales of time over which Earth processes operate. An important aspect of Earth and space sciences involves making inferences about events in Earth's history based on a data record that is increasingly incomplete the farther one goes back in time. A mathematical analysis of radiometric dating is used to comprehend how absolute ages are obtained for the geologic record. Students develop models and explanations for the ways that feedback among different Earth systems controls the appearance of the Earth's surface. Central to this is the tension between internal systems, which are largely responsible for creating land at Earth's surface (e.g., volcanism and mountain building), and the sun-driven surface systems that tear down land through weathering and erosion. Students demonstrate proficiency in developing and using models, constructing explanations, and engaging in argument from evidence. The crosscutting concepts of stability and change, energy and matter, and patterns are called out as organizing elements of this unit.

Technical Terms

Thermal convection, plate tectonics, geoscience, geosphere, seismic waves, radioactive decay, exponential decay, electromagnetic radiation

Formative Assessment Measures

Part A: How long does it take to make a mountain?

Students who understand the concepts are able to:

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

Develop a model to illustrate how the appearance of land features and seafloor features are a result of both constructive forces and destructive mechanisms.

Quantify and model rates of change of Earth's internal and surface processes over very short and very long periods of time.

Part B: How much force is needed to move a continent? What can possibly provide the energy for that much force?

Students who understand the concepts are able to:

Develop an evidence-based model of Earth's interior to describe the cycling of matter by thermal convection.

Develop a one-dimensional model, based on evidence, of Earth with radial layers determined by density to describe the cycling of matter by thermal convection.

Develop a three-dimensional model of Earth's interior, based on evidence, to show mantle convection and the resulting plate tectonics.

Develop a model of Earth's interior, based on evidence, to show that energy drives the cycling of matter by thermal convection.

Part C: Are all rocks the same age?

Students who understand the concepts are able to:

Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks. Evaluate evidence of plate interactions to explain the ages of crustal rocks

Part D: How do changes in the geosphere effect the atmosphere?

Students who understand the concepts are able to:

Analyze geoscience data using tools, technologies, and/or models (e.g., computational, mathematical) to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and technical texts,	Reason abstractly and quantitatively. (HS-ESS1-5),	
attending to important distinctions the author makes and to any gaps or	(HS-ESS2-1),(HS-ESS2-2),(HSESS2-3) MP.2	
inconsistencies in the account. (HS-ESS1-5), (HS-ESS2-2),(HS-ESS2-3) RST.11-12.1	Model with mathematics. (HS-ESS2-1),(HS-ESS2-3) MP.4	
Determine the central ideas or conclusions of a text; summarize complex	Use units as a way to understand problems and to guide the solution of	
concepts, processes, or information presented in a text by paraphrasing them in	multi step problems; choose and interpret units consistently in formulas;	
simpler but still accurate terms. (HS-ESS2-2) RST.11-12.2	choose and interpret the scale and the origin in graphs and data displays.	
	(HS-ESS1-5), (HSESS2-1),(HS-ESS2-2),(HS-ESS2-3)	
	HSN-Q.A.1	

Cliffside Park Public Schools

Evaluate the hypotheses, data, analysis, and conclusions in a science or technical		Define appropriate quantities for the purpose of descriptive modeling.		
text, verifying the data when possible and corroborating or challenging		(HS-ESS1- 5), (HS-ESS2-1),(HS-ESS2-3) HSN-Q.A.2		
conclusions with other sources of information. (HS-ESS1-5) RST.11-12.8		Choose a level of accuracy app	propriate to limitations on measurement	
Write informative/explanatory text	ts, including the narration of historical events,	when reporting quantities. (HS	5-ESS1-5)	
scientific procedures/ experiments	, or technical processes. (HS-ESS1-5) WHST.9-	,(HS-ESS2-1),(HS-ESS2-2),(HS-E	SS2-3) HSNQ.A.3	
12.2				
Conduct short as well as more sust	ained research projects to answer a question			
(including a self-generated questio	n) or solve a problem; narrow or broaden the			
inquiry when appropriate; synthesi	ze multiple sources on the subject,			
demonstrating understanding of th	e subject under investigation. (HS-ESS2-5)			
WHST.9-12.7				
Make strategic use of digital media	(e.g., textual, graphical, audio, visual, and			
interactive elements) in presentations to enhance understanding of findings,				
reasoning, and evidence and to add interest. (HS-ESS2-1),(HS-ESS2-3) SL.11-12.5				
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.			
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CR	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards 8.1.12, A.1, 8.1.12, A.2, 8.1.12, A.3, 8.1.12, A.4, 8.1.12, A.5, 8.1.12, E.1, 8.2.12, B.1, 8.2.12, B.4, 8.2.12, C.5			.B.1,8.2.12.B.4, 8.2.12.C.5	
	Modifica	tions		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities	
Think alouds	ouds Leveled readers Extended time Independent research/ing		Independent research/inquiry	
Read alouds	Assistive technology	Parent communication	Collaborative teamwork	
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning	
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks	
Think-pair- share Answer masking			Self-directed activities	
Visual aides	Answer eliminator			
Modeling	Highlighter	1		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

Cognates

Color contrast

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-ESS2-1: Earth's Systems

HS-ESS2-1: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

Clarification Statement: Emphasis is on how the appearance of land features (such as mountains, valleys, and plateaus) and seafloor features (such as trenches, ridges, and seamounts) are a result of both constructive forces (such as volcanism, tectonic uplift, and orogeny) and destructive mechanisms (such as as weathering, mass wasting, and coastal erosion).

Assessment Boundary: Assessment does not include memorization of the details of the formation of specific geographic features of Earth's surface.

Evidence Statements: HS-ESS2-1

Disciplinary Core Ideas	Cross-Cutting Concepts	
ESS2.A: Earth Materials and Systems	Stability and Change	
Earth's systems, being dynamic and interacting, cause	Change and rates of change can be quantified	
feedback effects that can increase or decrease the original	and modeled over very short or very long	
changes.	periods of time. Some system changes are	
ESS2.B: Plate Tectonics and Large-Scale System Interactions	irreversible.	
Plate tectonics is the unifying theory that explains the past and		
current movements of the rocks at Earth's surface and		
provides a framework for understanding its geologic history.		
Plate movements are responsible for most continental and		
ocean-floor features and for the distribution of most rocks and		
minerals within Earth's crust. (ESS2.B Grade 8 GBE)		
Connections to other DCIs in this grade-band: HS.PS2.B		
•	 ESS2.A: Earth Materials and Systems Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features and for the distribution of most rocks and minerals within Earth's crust. (ESS2.B Grade 8 GBE) 	

Articulation of DCIs across grade-bands: MS.PS2.B ; MS.LS2.B ; MS.ESS1.C ; MS.ESS2.A ; MS.ESS2.B ; MS.ESS2.C ; MS.ESS2.D

NJSLS- ELA: SL.11-12.5

NJSLS- Math: MP.2. MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3

5E Model

HS-ESS2-1: Develop a model to illustrate how Earth's internal and surface processes operate at different spatial and temporal scales to form continental and ocean-floor features.

Engage Sea Floor S

Sea Floor Spreading and Plate Tectonics

Cliffside Park Public Schools

Anticipatory Set	https://www.youtube.com/watch?v=ZzvDIP6xd9o		
	The Grand Canyon- How It Was Formed		
	https://www.youtube.com/watch?v=ktf73HNZZGY		
	Volcanoes 101		
	http://video.nationalgeographic.com/video/101-videos/volcanoes-101		
Exploration	Sea-Floor Spreading and Subduction Model		
Student Inquiry	In this lesson, students will build a model of the outer 300 km (180 miles) of the Earth that can be used to develop a better		
	understanding of the principal features of plate tectonics, including sea-floor spreading, the pattern of magnetic stripes frozen into		
	the sea floor, transform faulting, thrust faulting, subduction, and volcanism.		
	http://pubs.usgs.gov/of/1999/ofr-99-0132/		
Explanation	In these lessons		
Concepts and Practices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	ESS2.A: Earth Materials and Systems		
	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.		
	ESS2.B: Plate Tectonics and Large-Scale System Interactions		
	Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a		
	framework for understanding its geologic history. Plate movements are responsible for most continental and ocean-floor features		
	and for the distribution of most rocks and minerals within Earth's crust. (ESS2.B Grade 8 GBE)		
Elaboration	Related Activities		
Extension Activity	http://www.symbaloo.com/mix/hs-ess2-1?searched=true		
Evaluation	Assessment Task A: Sea Floor Spreading Model		
Assessment Tasks	Students use the model to illustrate the relationship between:		
	The formation of continental and ocean floor features		
	Earth's internal and surface processes operating on different temporal or spatial scales.		

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-ESS2-3: Earth's Systems

HS-ESS2-3: Develop a model based on evidence of Earth's interior to describe the cycling of matter by thermal convection.

Clarification Statement: Emphasis is on both a one-dimensional model of Earth, with radial layers determined by density, and a three-dimensional model, which is controlled by mantle convection and the resulting plate tectonics. Examples of evidence include maps of Earth's three-dimensional structure obtained from seismic waves, records of the rate of change of Earth's magnetic field (as constraints on convection in the outer core), and identification of the composition of Earth's layers from high-pressure laboratory experiments.

Assessment Boundary: N/A

Evidence Statements: HS-ESS2-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS2.A: Earth Materials and Systems	Energy and Matter
Modeling in 9–12 builds on K–8 experiences and	Evidence from deep probes and seismic waves, reconstructions	Energy drives the cycling of matter within
progresses to using, synthesizing, and	of historical changes in Earth's surface and its magnetic field,	and between systems.
developing models to predict and show	and an understanding of physical and chemical processes lead	Connections to Engineering, Technology,
relationships among variables between systems	<u>to a model of Earth with a hot but solid inner core, a liquid</u>	and Applications of Science
and their components in the natural and	outer core, a solid mantle and crust. Motions of the mantle and	Interdependence of Science, Engineering,
designed world(s).	its plates occur primarily through thermal convection, which	and Technology
Develop a model based on evidence to illustrate	involves the cycling of matter due to the outward flow of	Science and engineering complement each
the relationships between systems or between	energy from Earth's interior and gravitational movement of	other in the cycle known as research and
components of a system.	denser materials toward the interior.	development (R&D). Many R&D projects
Connections to Nature of Science	ESS2.B: Plate Tectonics and Large-Scale System Interactions	may involve scientists, engineers, and others
Scientific Knowledge is Based on Empirical	The radioactive decay of unstable isotopes continually	with wide ranges of expertise.
Evidence	generates new energy within Earth's crust and mantle,	
Science knowledge is based on empirical	providing the primary source of the heat that drives mantle	
evidence.	convection. Plate tectonics can be viewed as the surface	
Science disciplines share common rules of	expression of mantle convection.	
evidence used to evaluate explanations about	PS4.A: Wave Properties	
natural systems.		

Science includes the pro	cess of coordinating	Geologists use seismic waves and their reflection at interfaces	
patterns of evidence wit	h current theory.	between layers to probe structures deep in the planet.	
	·	(secondary to HS-ESS2-3)	
Connections to other D	CIs in this grade-band: I	IS.PS2.B ; HS.PS3.B ; HS.PS3.D	
Articulation of DCIs acro	oss grade-bands: MS.PS	1.A ; MS.PS1.B ; MS.PS2.B ; MS.PS3.A ; MS.PS3.B ; MS.ESS2.A ;	MS.ESS2.B
NJSLS- ELA: RST.11-12.1	, SL.11-12.5		
NJSLS- Math: MP.2, MP.	.4, HSN.Q.A.1, HSN.Q.A	.2, HSN.Q.A.3	
		5E Model	
HS-ESS2-3: Develop a m	odel based on evidence	e of Earth's interior to describe the cycling of matter by therma	l convection.
Engago	Hot Planet		
Engage Anticipatory Set	Reviews the evidence that Earth was once molten and where heat comes from today.		
Anticipatory Set	http://www.ck12.org/e	earth-science/Earths-Layers/rwa/Hot-Planet/	
	Convection in the Earth	<u>1</u>	
Exploration	http://astroventure.arc.nasa.gov/teachers/pdf/AV-Geolesson-4.pdf		
Student Inquiry	In this multi-day lesson, students will explore conditions that change the density of a substance, resulting in movement. They		
Student inquiry	observe convection & use this information to infer how movement occurs inside the Earth. Mathematical & graphic models will be		
	developed.		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	•	in Teacher Directed Lessons (Disciplinary Core Ideas):	
	ESS2.A: Earth Materials and Systems- Evidence from deep probes and seismic waves, reconstructions of historical changes in Earth's		
Explanation surface and its magnetic field, and an understanding of physic			
Concepts and Practices	inner core, a liquid outer core, a solid mantle and crust. Motions of the mantle and its plates occur primarily through thermal		
		lves the cycling of matter due to the outward flow of energy from	m Earth's interior and gravitational movement
	of denser materials tov		
	ESS2.B: Plate Tectonics	and Large-Scale System Interactions- The radioactive decay of u	instable isotopes continually generates new
	•••	rust and mantle, providing the primary source of the heat that d	rives mantle convection. Plate tectonics can
be viewed as the surface expression of mantle convection.			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

	PS4.A: Wave Properties Geologists use seismic waves and their reflection at interfaces between layers to probe structures deep in
	the planet. (secondary to HS-ESS2-3)
	Modeling the EarthMotion Mock-Ups
Elaboration	http://www.thetech.org/sites/default/files/pdfs/Design-Challenge-Learning-Lessons/Seismic_Lesson1_ELA_final.pdf
Extension Activity	The purpose of this activity is to get students to teach each other about: the mechanics of plate tectonics, faults and plate
Extension Activity	boundaries, how fault slippage causes earthquakes and how seismic waves travel. Students will read about and model one of these
	topics. They will then present their findings to the class.
	Assessment Task A: Student Model
	Students use the model to describe the cycling of matter by thermal convection in Earth's interior, including:
Evaluation	1. The flow of matter in the mantle that causes crustal plates to move;
Assessment Tasks	2. The flow of matter in the liquid outer core that generates the Earth's magnetic field, including evidence of polar reversals
	3. The radial layers determined by density in the interior of Earth
	4. The addition of a significant amount of thermal energy released by radioactive decay in Earth's crust and mantle.

HS-ESS1-5: Earth's Place in the Universe

HS-ESS1-5: Evaluate evidence of the past and current movements of continental and oceanic crust and the theory of plate tectonics to explain the ages of crustal rocks.

PHYSICS

Clarification Statement: Emphasis is on the ability of plate tectonics to explain the ages of crustal rocks. Examples include evidence of the ages oceanic crust increasing with distance from mid-ocean ridges (a result of plate spreading) and the ages of North American continental crust decreasing with distance away from a central ancient core (a result of plate interactions).

Assessment Boundary: N/A

Evidence Statements: HS-ESS1-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ESS1.C: The History of Planet Earth	Patterns
Engaging in argument from evidence in 9–12	Continental rocks, which can be older than 4 billion years, are	Empirical evidence is needed to identify
builds on K–8 experiences and progresses to	<u>generally much older than the rocks of the ocean floor, which are less</u>	patterns.
using appropriate and sufficient evidence	than 200 million years old.	
and scientific reasoning to defend and	ESS2.B: Plate Tectonics and Large-Scale System Interactions	

Cliffside Park Public Schools

critique claims and explain		Plate tectonics is the unifying theory that explains the past and		
natural and designed world(s). Arguments		current movements of the rocks at Earth's surface and provides a		
may also come from current scientific or		framework for understanding its geologic history. (ESS2.B Grade 8		
historical episodes in sci	ence.	<u>GBE) (secondary)</u>		
Evaluate evidence behir	nd currently accepted	PS1.C: Nuclear Processes		
explanations or solution	s to determine the	Spontaneous radioactive decays follow a characteristic exponential		
merits of arguments.		decay law. Nuclear lifetimes allow radiometric dating to be used to		
		determine the ages of rocks and other materials. (secondary)		
Connections to other D	CIs in this grade-band	: HS.PS3.B ; HS.ESS2.A		
Articulation of DCIs acro	oss grade-bands: MS.	SS1.C ; MS.ESS2.A ; MS.ESS2.B		
NJSLS- ELA: RST.11-12.1	., RST.11-12.8, WHST.	9-12.2		
NJSLS- Math: MP.2, HSI	N-Q.A.1, HSN-Q.A.2, H	SN-Q.A.3		
		5E Model		
HS-ESS1-5: Evaluate evi	dence of the past and	current movements of continental and oceanic crust and the theory	of plate tectonics to explain the ages of	
crustal rocks.				
Engage	Oceanic Crust: Definition, Composition & Facts			
Anticipatory Set	http://study.com/academy/lesson/oceanic-crust-definition-composition-facts.html			
	Plate Tectonics Documentary			
	https://www.youtube.com/watch?v=1-HwPR_4mP4			
Exploration	Features of Rock Layers			
Student Inquiry	http://betterlesson.com/lesson/635125/features-of-rock-layers			
	In this lesson, students will identify intrusions, extrusions, folding, faulting, and contact metamorphism in rock layers and determine			
	the relative age of various rock layers using cross-cutting relationships			
	Plate Tectonics: Simulation & Lesson			
	Students will investigate the different convergent and divergent boundaries.			
	https://phet.colorado.edu/en/contributions/view/3770			
	In these lessons			
Explanation	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.			
Concepts and Practices	es Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):				
L				

0

SUBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

GRADE: 9-12

	-
ESS1.C: The History of Planet Earth	
Continental rocks, which can be older than 4 billion years, are generally much older than the rocks of the ocean floor, which are less	
than 200 million years old.	
ESS2.B: Plate Tectonics and Large-Scale System Interactions	
Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a	
framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary)	
PS1.C: Nuclear Processes	
Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used	
to determine the ages of rocks and other materials. (secondary)	
	Radioa
	https:/
Assessment Task: A	1
1. Students describe how the following patterns observed from the evidence support the explanation about the ages of crustal rocks:	:
The pattern of the continental crust being older than the oceanic crust, the pattern that the oldest continental rocks are located at	
the center of continents, with the ages decreasing from their centers to their margin and the pattern that the ages of oceanic crust	
are greatest nearest the continents and decrease in age with proximity to the mid-ocean ridges.	
2. Students synthesize the relevant evidence to describe the relationship between the motion of continental plates and the patterns	
in the ages of crustal rocks, including that: At boundaries where plates are moving apart, such as mid-ocean ridges, material from the	2
interior of the Earth must be emerging and forming new rocks with the youngest ages, the regions furthest from the plate	
boundaries (continental centers) will have the oldest rocks because new crust is added to the edge of continents at places where	
plates are coming together, such as subduction zones and the oldest crustal rocks are found on the continents because oceanic crust	
is constantly being destroyed at places where plates are coming together, such as subduction zones.	1
-	 than 200 million years old. ESS2.B: Plate Tectonics and Large-Scale System Interactions Plate tectonics is the unifying theory that explains the past and current movements of the rocks at Earth's surface and provides a framework for understanding its geologic history. (ESS2.B Grade 8 GBE) (secondary) PS1.C: Nuclear Processes Spontaneous radioactive decays follow a characteristic exponential decay law. Nuclear lifetimes allow radiometric dating to be used to determine the ages of rocks and other materials. (secondary) Assessment Task: A Students describe how the following patterns observed from the evidence support the explanation about the ages of crustal rocks: The pattern of the continental crust being older than the oceanic crust, the pattern that the oldest continental rocks are located at the center of continents, with the ages decreasing from their centers to their margin and the pattern that the ages of oceanic crust are greatest nearest the continents and decrease in age with proximity to the mid-ocean ridges. Students synthesize the relevant evidence to describe the relationship between the motion of continental plates and the patterns in the ages of crustal rocks, including that: At boundaries where plates are moving apart, such as mid-ocean ridges, material from the interior of the Earth must be emerging and forming new rocks with the youngest ages, the regions furthest from the plate boundaries (continental centers) will have the oldest rocks because new crust is added to the edge of continents at places where

PHYSICS
HS-ESS2-2: Earth's Systems
HS-ESS2-2: Analyze geoscience data to make the claim that one change to Earth's surface can create feedbacks that cause changes to other Earth systems.
Clarification Statement: Examples should include climate feedbacks, such as how an increase in greenhouse gases causes a rise in global temperatures that
melts glacial ice, which reduces the amount of sunlight reflected from Earth's surface, increasing surface temperatures and further reducing the amount of

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

ice. Examples could also be taken from other system interactions, such as how the loss of ground vegetation causes an increase in water runoff and soil erosion; how dammed rivers increase groundwater recharge, decrease sediment transport, and increase coastal erosion; or how the loss of wetlands causes a decrease in local humidity that further reduces the wetland extent.

Assessment Boundary: N/A

Evidence Statements: HS-ESS2-2

Science & Er	ngineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Inter	preting Data	ESS2.A: Earth Materials and Systems	Stability and Change
Analyzing data in 9–	<u>12 builds on K–8</u>	Earth's systems, being dynamic and	Feedback (negative or positive) can stabilize or destabilize a
experiences and pro	gresses to introducing more	interacting, cause feedback effects that can	<u>system.</u>
detailed statistical a	nalysis, the comparison of	increase or decrease the original changes.	Connections to Engineering, Technology, and Applications o
data sets for consist	ency, and the use of models	ESS2.D: Weather and Climate	Science
to generate and ana	<u>lyze data.</u>	The foundation for Earth's global climate	Influence of Engineering, Technology, and Science on Societ
Analyze data using t	ools, technologies, and/or	systems is the electromagnetic radiation from	and the Natural World
<u>models (e.g., compu</u>	<u>tational, mathematical) in</u>	the sun, as well as its reflection, absorption,	New technologies can have deep impacts on society and the
order to make valid	and reliable scientific claims	storage, and redistribution among the	environment, including some that were not anticipated.
<u>or determine an opt</u>	imal design solution.	atmosphere, ocean, and land systems, and this	Analysis of costs and benefits is a critical aspect of decisions
		energy's re-radiation into space.	about technology.
NS.ESS3.C ; MS.ESS NS.ESS3.C ; MS.ESS NJSLS- ELA: RST.11-:	3.D	3.D ; MIS.PS4.B ; MIS.LS2.B ; MIS.LS2.C ; MIS.LS4.	C ; MS.ESS2.A ; MS.ESS2.B ; MS.ESS2.C ; MS.ESS2.D ;
	HSN.Q.A.1, HSN.Q.A.3		
, , , , , , , , , , , , , , , , , , , ,		5E Model	
HS-ESS2-2: Analyze	geoscience data to make the		create feedbacks that cause changes to other Earth systems
Engage	Earth System: El Nino		
Anticipatory Set	http://www.pbslearningmedia.org/resource/ess05.sci.ess.watcyc.eselnino/earth-system-el-nintildeo/		
	Earth's Radiation Budget		
	http://missionscience.nasa.gov/ems/13_radiationbudget.html		
	Investigating the Greenhouse Effect		
Exploration			
Student Inquiry			

Cliffside Park Public Schools

GRADE: 9-12

	Investigate how atmospheric changes affect global temperature, examine how clouds contribute to the greenhouse effect, and		
	predict how changing greenhouse gas levels affect global temperature.		
	https://phet.colorado.edu/en/contributions/view/3092;jsessionid=624761EF03DA4E1D5801F7686C66450D		
	Analyzing Geoscience Data: Prezi		
	https://prezi.com/ifdbpkhz8oi_/115-analyze-geoscience-data/		
	This presentation includes:		
	A brief description of what a feedback cycle is in general.		
	A description of why scientists believe that arctic ice is part of a feedback cycle with ice melting even faster than just warmer air		
	temperatures would produce.		
	Mentions two pieces of data that support the claim that the arctic ice feedback cycle exists.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	ESS2.A: Earth Materials and Systems		
	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.		
	ESS2.D: Weather and Climate		
Explanation	The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption,		
Concepts and Practices	es storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space.		
	Earth's systems, being dynamic and interacting, cause feedback effects that can increase or decrease the original changes.		
	ESS2.D: Weather and Climate		
	The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption,		
	storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space.		
Elaboration	Related Activities		
Extension Activity	http://www.earthsciweek.org/ngss-performance-expectations/hs-ess2-2		
	Assessment Task A: Geoscience Data Analysis		
Evaluation	Students will use the geoscience data presented in the activities above to:		
Assessment Tasks	Describe a mechanism for the feedbacks between two of Earth's systems and whether the feedback is positive or negative		
	Describe a particular unanticipated or unintended effect of a selected technology in Earth's systems if present		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

Unit 6: Overview **Unit 6: Wave Properties Content Area: Physics** Pacing: 20 Instructional days **Essential Question** How are waves used to transfer energy and send and store information? Student Learning Objectives (Performance Expectations) HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. **Unit Summary** In this unit of study, students apply their understanding of how wave properties can be used to transfer information across long distances, store information, and investigate nature on many scales. The crosscutting concept of cause and effect is highlighted as an organizing concept for these disciplinary core ideas. Students are expected to demonstrate proficiency in using mathematical thinking, and to use this practice to demonstrate understanding of the core idea. **Technical Terms** Frequency, wavelength, crests, troughs, speed, amplitude, nodes, antinodes, seismic waves, mechanical waves, Electromagnetic Radiation Unit (ERU), P-Waves, S-Waves, longitudinal waves, transverse waves, surface waves, energy transmission, reflection, infraction, absorption, diffraction resonance, tsunami, plate tectonics **Formative Assessment Measures** Part A: Why do physicists make the best surfers? How do we know what the inside of the Earth looks like? Students who understand the concepts are able to: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Use algebraic relationships to quantitatively describe relationships among the frequency, wavelength, and speed of waves traveling in various media. **Interdisciplinary Connections** NJSLS- ELA NJSLS- Mathematics Integrate and evaluate multiple sources of information presented in Reason abstractly and quantitatively. (HS-PS4-1) MP.2 diverse formats and media (e.g., quantitative data, video, Model with mathematics. (HS-PS4-1) MP.4 multimedia) in order to address a question or solve a problem. Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1) (HS-PS4-1) RST.11-12.7 HSA-SSF.A.1

Cliffside Park Public Schools

GRADE: 9-12

		Choose and produce an equivalent for	orm of an expression to reveal and explain	
properties of the quantity represented by the expression. (HS-PS4-1) HSASSE.B.3				
Rearrange formulas to highlight a quantity of interest, using the same reasoning as in				
solving equations. (HS-PS4-1) HSA.CED.A.4				
Core Instructional Materials	Can include: Textbooks Series, Lab N	1aterials, etc.		
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, C	RP 7, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8	.1.12.A.4, 8.1.12.A.5, 8.1.12.E.1, 8.2.12	2.B.1,8.2.12.B.4, 8.2.12.C.5	
Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	
Word walls	Visual aides	Peer tutoring	Challenge assignments	
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities	
Bilingual	Multimedia	Graphic organizers	Tiered activities	
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry	
Think alouds	Assistive technology	Parent communication	Collaborative teamwork	
Read alouds	Notes/summaries	Modified assignments	Higher level questioning	
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks	
Annotation guides	Answer masking		Self-directed activities	
Think-pair- share	Answer eliminator			
Visual aides	Highlighter			
Modeling	Color contrast			
Cognates				

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-PS4-1: Waves and their Applications in Technologies for Information Transfer

HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media.

Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water, and seismic waves traveling through the Earth.

Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.

Evidence Statements: HS-PS4-1

sing Mathematics and Computational Thinking		Cross-Cutting Concepts
	PS4.A: Wave Properties	Cause and Effect
athematical and computational thinking at the 9-12 leve	The wavelength and frequency of a wave are related to	Empirical evidence is required to
uilds on K-8 and progresses to using algebraic thinking	one another by the speed of travel of the wave, which	differentiate between cause and
nd analysis, a range of linear and nonlinear functions	depends on the type of wave and the medium through	correlation and make claims about
cluding trigonometric functions, exponentials and	which it is passing.	specific causes and effects.
garithms, and computational tools for statistical analysis		
analyze, represent, and model data. Simple		
emputational simulations are created and used based on		
athematical models of basic assumptions.		
se mathematical representations of phenomena or		
esign solutions to describe and/or support claims and/or		
planations.		
onnections to other DCIs in this grade-band: HS.ESS2.A		
rticulation of DCIs across grade-bands: MS.PS4.A ; MS.P	S4.B	
JSLS- ELA: RST.11-12.7		
JSLS- Math: MP.2 , MP.4 , HSA-SSE.A.1 , HSA-SSE.B.3 , H	SA.CED.A.4	
	5E Model	
S-PS4-1: Use mathematical representations to support a	claim regarding relationships among the frequency, way	velength, and speed of waves travelin
various media.		

GCSE Science Revision - Types of Waves

Ø

SUBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

	https://www.youtube.com/watch?v=w2s2fZr8sqQ	
F	Radio Waves & Electromagnetic Fields	
Engage	Students will investigate how radio broadcasting and radio receivers work.	
Anticipatory Set	https://phet.colorado.edu/services/download-servlet?filename=%2Factivities%2F3084%2FHW11_SIM.pdf	
	Making Waves and Determining Mathematical Relationships	
	Students make waves and find an important relationship between variables.	
	http://betterlesson.com/lesson/639696/making-waves-and-determining-mathematical-relationships	
Exploration	Wave Lab Stations Day 1	
Student Inquiry	Students participate in lab stations about the wave phenomena.	
Student inquiry	http://betterlesson.com/lesson/639703/wave-lab-stations-day-1	
	Wave Lab Stations Day 2	
	Students will be able to identify the wave phenomena occurring at each station in the lab.	
	http://betterlesson.com/lesson/639704/wave-lab-stations-day-2	
	In these lessons	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
concepts and Fractices	PS4.A: Wave Properties	
	The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type	
	of wave and the medium through which it is passing.	
Elaboration	Measuring the Speed of Sound	
Extension Activity	What is the speed of sound in our classroom? Today, students find out!	
	http://betterlesson.com/lesson/640789/measuring-the-speed-of-sound	
	Assessment Task A: Making Waves Activity	
	Students will use mathematical relationships to support their claims regarding the relationships between frequency, speed and	
Evaluation	wavelength.	
Assessment Tasks	Using the mathematical relationship, students assess claims about any of the three quantities when the other two quantities are	
	known for waves traveling in various specified media.	
	Students use the mathematical relationships to distinguish between cause and correlation with respect to the supported claims.	

Cliffside Park Public Schools

GRADE: 9-12

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: August 2016

Unit 7: Overview

Unit 7: Electromagnetic Radiation

Content Area: Physics

Pacing: 30 Instructional days

Essential Question

Why has digital technology replaced analog technology?

Student Learning Objectives (Performance Expectations)

HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model, and that for some situations one model is more useful than the other.

HS-PS4-4: Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

HS-PS4-5: Communicate technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.

HS-PS4-2: Evaluate questions about the advantages of using a digital transmission and storage of information.

HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

Unit Summary

In this unit of study, students are able to apply their understanding of wave properties to make sense of how electromagnetic radiation can be used to transfer information across long distances, store information, and be used to investigate nature on many scales. Models of electromagnetic radiation as both a wave of changing electrical and magnetic fields or as particles are developed and used. Students also demonstrate their understanding of engineering ideas by presenting information about how technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy. The crosscutting concepts of systems and system models; stability and change; interdependence of science, engineering, and technology; and influence of engineering, technology, and science on society and the natural world are highlighted as organizing concepts. Students are expected to demonstrate proficiency in asking questions, engaging in argument from evidence, and obtaining, evaluating, and communicating information, and they are expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Wave model, particle model, qualitative criteria quantitative criteria, photoelectric, digitized information, diffraction, Michelson-Morley experiment, polarization, Doppler shift, wave interference, geometric optics, ray diagrams, photoelectric effect, Piezoelectric effect, spectra

Formative Assessment Measures

BOE APPROVAL: August 2016

Part A: How can electromagnetic radiation be both a wave and a particle at the same time?

Students who understand the concepts are able to:

Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle model and that for some situations one model is more useful than the other.

Evaluate experimental evidence that electromagnetic radiation can be described either by a wave model or a particle model and that for some situations one model is more useful than the other.

Use models (e.g., physical, mathematical, computer models) to simulate electromagnetic radiation systems and interactions—including energy, matter, and information flows—within and between systems at different scales.

Part B: Should we encourage the board of education to install solar panels?

Students who understand the concepts are able to:

Evaluate the validity and reliability of multiple claims in published materials about the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Evaluate the validity and reliability of claims that photons associated with different frequencies of light have different energies and that the damage to living tissue from electromagnetic radiation depends on the energy of the radiation.

Give qualitative descriptions of how photons associated with different frequencies of light have different energies and how the damage to living tissue from electromagnetic radiation depends on the energy of the radiation.

Suggest and predict cause-and-effect relationships for electromagnetic radiation systems when matter absorbs different frequencies of light by examining what is known about smaller scale mechanisms within the system.

Part C: How does the International Space Station power all of its equipment? How do astronauts communicate with people on the ground?

Students who understand the concepts are able to:

Communicate qualitative technical information about how some technological devices use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy.

Communicate technical information or ideas about technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy in multiple formats (including orally, graphically, textually, and mathematically).

Analyze technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy by specifying criteria and constraints for successful solutions.

Evaluate a solution offered by technological devices that use the principles of wave behavior and wave interactions with matter to transmit and capture information and energy based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
5	Reason abstractly and quantitatively. (HS-PS4-3), (HS-ETS1-1), (HS-ETS1-3) MP.2 Model with mathematics. (HS-ETS1-1),(HS-ETS1-3) MP.4	

Cliffside Park Public Schools

GRADE: 9-12

			1
		Interpret expressions that repres HSA-SSE.A.1	ent a quantity in terms of its context. (HS-PS4-3)
			nt form of an expression to reveal and explain
			ented by the expression. (HS-PS4-3) HSASSE.B.3
	Integrate and evaluate multiple sources of information presented in diverse		
	•	as in solving equations. (HS-PS4-3	
	blem. (HS-PS4-4),(HS-ETS1-1),(HS-ETS1-3)		,
RST.11-12.7			
Evaluate the hypotheses, data, ar	alysis, and conclusions in a science or		
technical text, verifying the data v	when possible and corroborating or		
challenging conclusions with othe	er sources of information. (HS-PS4-3),		
(HS-ETS1-1), (HS-ETS1-3),(HS-PS4			
•	nge of sources (e.g., texts, experiments,		
-	simulations) into a coherent understanding of a process, phenomenon, or		
	concept, resolving conflicting information when possible. (HS-ETS1-1),		
. ,	(HS-ETS1- 3) RST.11-12.9		
	Write informative/explanatory texts, including the narration of historical		
events, scientific procedures/experiments, or technical processes.			
(HS-PS4-5) WHST.11- 12.2			
Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and			
limitations of each source in terms of the specific task, purpose, and			
	audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and		
following a standard format for ci	-		
Core Instructional Materials	Can include: Textbooks Series, Lab Materia	ls, etc.	
21st Century Life and Careers CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8, CRP 9, CRP 11, CRP 12			
Technology Standards	Technology Standards 8.1.12, A.1, 8.1.12, A.2, 8.1.12, A.3, 8.1.12, A.4, 8.1.12, A.5, 8.1.12, E.1, 8.2.12, B.1, 8.2.12, B.4, 8.2.12, C.5		B.1,8.2.12.B.4, 8.2.12.C.5
	Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities

Cliffside Park Public Schools

Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

PHYSICS			
HS-PS4-3: Waves and their Applications in Technologies for Information			
HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a			
particle model, and that for some situations one model is more useful than the other.			
Clarification Statement: Emphasis is on how the experimental evide	nce supports the claim and how a theory is generally	modified in light of new evidence.	
Examples of a phenomenon could include resonance, interference, o	liffraction, and photoelectric effect.		
Assessment Boundary: Assessment does not include using quantum	theory.		
Evidence Statements: HS-PS4-3		-	
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Engaging in Argument from Evidence	PS4.A: Wave Properties	Systems and System Models	
Engaging in argument from evidence in 9–12 builds on K–8	[From the 3–5 grade band endpoints] Waves can	<u>Models (e.g., physical,</u>	
experiences and progresses to using appropriate and sufficient	add or cancel one another as they cross,	mathematical, computer models)	
evidence and scientific reasoning to defend and critique claims and	depending on their relative phase (i.e., relative	can be used to simulate systems and	
explanations about natural and designed worlds. Arguments may	position of peaks and troughs of the waves), but	interactions—including energy,	
also come from current scientific or historical episodes in science.	they emerge unaffected by each other. (Boundary:	matter, and information	
Evaluate the claims, evidence, and reasoning behind currently	The discussion at this grade level is qualitative	flows—within and between systems	
accepted explanations or solutions to determine the merits of	only; it can be based on the fact that two different	at different scales.	
arguments.	sounds can pass a location in different directions		
Connections to Nature of Science	without getting mixed up.)		
Science Models, Laws, Mechanisms, and Theories Explain Natural	PS4.B: Electromagnetic Radiation		
Phenomena	Electromagnetic radiation (e.g., radio, microwaves,		
A scientific theory is a substantiated explanation of some aspect of	light) can be modeled as a wave of changing		
the natural world, based on a body of facts that have been	electric and magnetic fields or as particles called		
repeatedly confirmed through observation and experiment and the	photons. The wave model is useful for explaining		
science community validates each theory before it is accepted. If	many features of electromagnetic radiation, and		
new evidence is discovered that the theory does not accommodate,	the particle model explains other features.		
he theory is generally modified in light of this new evidence.			
Connections to other DCIs in this grade-band: HS.PS3.D ; HS.ESS1.A ; HS.ESS2.D			
Articulation of DCIs across grade-bands: MS.PS4.B			

0

SUBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

NJSLS- ELA: RST.9-10.8,	NJSLS- ELA: RST.9-10.8, RST.11-12.1, RST.11-12.8		
NJSLS- Math: MP.2, HS	NJSLS- Math: MP.2, HSA-SSE.A.1, HSA-SSE.B.3, HSA.CED.A.4		
	5E Model		
HS-PS4-3: Evaluate the	claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a		
particle model, and tha	particle model, and that for some situations one model is more useful than the other.		
Engage	Do Cellphones Cause Brain Tumors?		
Anticipatory Set	https://www.youtube.com/watch?v=wU5XkhUGzBs		
	Electromagnetic Investigations- Day 1		
	It's important to balance theory with observations and to provide evidence for any claim. Students will apply this thinking to four big		
	ideas in electromagnetics.		
	http://betterlesson.com/lesson/636830/electromagnetic-investigations-day-1		
	Electromagnetic Investigations- Day 2		
Exploration	It is important to balance theory with observation - particularly, as is the case with electromagnetics, when the theory is not		
Student Inquiry	intuitive.		
	http://betterlesson.com/lesson/636213/electromagnetic-investigations-day-2		
	Electromagnetic Investigations- Day 3		
	It's important to balance theory with observations and to provide evidence for any claim. Students will apply this thinking to four big		
	ideas in electromagnetics.		
	http://betterlesson.com/lesson/637306/electromagnetic-investigations-day-3		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	PS4.A: Wave Properties		
Concepts and Practices			
	relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this		
	grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without		
	getting mixed up.)		
	PS4.B: Electromagnetic Radiation		

0

SUBJECT: SCIENCE/PHYSICS

	Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as		
	particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model		
	explains other features.		
	A Closer Look at Photoelectric Effect		
Elaboration	Data from different metals show similarities and differences in the photoelectric effect, highlighting fundamental physics		
Extension Activity	phenomena.		
	http://betterlesson.com/lesson/638454/a-closer-look-at-photoelectricity		
	Assessment Task A: Electromagnetic Investigations		
	Following this three day investigation, students should:		
	Evaluate the given evidence for interference behavior of electromagnetic radiation to determine how it supports the argument that		
Evaluation Assessment Tasks	electromagnetic radiation can be described by a wave model.		
	Evaluate the phenomena of the photoelectric effect to determine how it supports the argument that electromagnetic radiation can		
	be described by a particle model.		
	Evaluate the given claims and reasoning for modeling electromagnetic radiation as both a wave and a particle, considering the		
	transfer of energy and information within and between systems, and why for some aspects the wave model is more useful and for		
	other aspects the particle model is more useful to describe the transfer of energy and information.		

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-PS4-4: Waves and their Applications in Technologies for Information Transfer

HS-PS4-4: Evaluate the validity and reliability of claims in published materials of the effects that different frequencies of electromagnetic radiation have when absorbed by matter.

Clarification Statement: Emphasis is on the idea that photons associated with different frequencies of light have different energies, and the damage to living tissue from electromagnetic radiation depends on the energy of the radiation. Examples of published materials could include trade books, magazines, web resources, videos, and other passages that may reflect bias.

Assessment Boundary: Assessment is limited to qualitative descriptions.

Evidence Statements: HS-PS4-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Obtaining, Evaluating, and Communicating	PS4.B: Electromagnetic Radiation	Cause and Effect	
Information	When light or longer wavelength electromagnetic	Cause and effect relationships can be	
Obtaining, evaluating, and communicating information	radiation is absorbed in matter, it is generally converted	suggested and predicted for complex	
in 9–12 builds on K–8 and progresses to evaluating the	into thermal energy (heat). Shorter wavelength	natural and human designed systems by	
validity and reliability of the claims, methods, and	electromagnetic radiation (ultraviolet, X-rays, gamma	examining what is known about smaller	
<u>designs.</u>	rays) can ionize atoms and cause damage to living cells.	scale mechanisms within the system.	
Evaluate the validity and reliability of multiple claims			
that appear in scientific and technical texts or media			
reports, verifying the data when possible.			
Connections to other DCIs in this grade-band: HS.PS1.C ; HS.PS3.A ; HS.PS3.D ; HS.LS1.C			
Articulation of DCIs across grade-bands: MS.PS3.D ; MS.PS4.B ; MS.LS1.C ; MS.ESS2.D			
NJSLS- ELA: RST.9-10.8, RST.11-12.1, RST.11-12.7, RST.1	1-12.8, WHST.11-12.8		
NJSLS- Math: N/A			
5E Model			
HS-PS4-4: Evaluate the validity and reliability of claims	in published materials of the effects that different freque	ncies of electromagnetic radiation have	
when absorbed by matter.			
Engage Anticipatory Set Effects of Electromagnetic Radiation on Human Health			

Cliffside Park Public Schools

GRADE: 9-12

	Electromagnetic Radiation (EMR) from Cell Phones, Computers, Tablets, Wi-Fi Routers and other personal electronic devices are		
	harmful for human health in many ways. See this video and learn more on how the Radiation from these devices are harmful.		
	https://www.youtube.com/watch?v=lJwnK52a3W0		
	The Most Radioactive Places on Earth		
	Who on Earth is exposed to the most ionizing radiation?		
	https://www.youtube.com/watch?v=TRL7o2kPqw0		
	What is Radiation?		
	To properly assess health risks, it is important to understand the transfer of electromagnetic energy.		
	https://betterlesson.com/lesson/636197/what-is-radiation		
	Creating a Radiation Journal		
	Radiation is a word used and misused frequently - students must come to grips with what we truly mean when we use it.		
Exploration	http://betterlesson.com/lesson/636199/creating-a-radiation-journal		
Student Inquiry	Radiation Journal Time		
	Electromagnetic phenomenon are complex; exploring them takes time and reflection.		
	http://betterlesson.com/lesson/636829/radiation-journal-time		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Concepts and Practices	PS4.B: Electromagnetic Radiation		
	When light or longer wavelength electromagnetic radiation is absorbed in matter, it is generally converted into thermal energy		
	(heat). Shorter wavelength electromagnetic radiation (ultraviolet, X-rays, gamma rays) can ionize atoms and cause damage to living		
	<u>cells.</u>		
Elaboration	Why Materials Block Your Phone Signal		
Extension Activity	Electromagnetic radiation interacts with matter in three ways: absorbed, reflected or transmitted.		
Extension Activity	https://betterlesson.com/lesson/645259/what-materials-block-your-phone-s-signal		
	Assessment Task: Evaluating Claims		
Evaluation	In the exploration activities above, students will evaluate claims on electromagnetic radiation. In their evaluation, students should:		
Assessment Tasks Describe the cause and effect reasonings in each claim, including the extrapolation to larger scales from caus			
	relationships of mechanisms at small scales.		

Cliffside Park Public Schools

GRADE: 9-12

Cliffside Park Public Schools

	PHYSICS	
HS-ETS1-1 Engineering Design		
	to specify qualitative and quantitative criteria and cor	straints for solutions that account for societal needs
and wants.		
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-1		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering	Connections to Engineering, Technology, and
Asking questions and defining problems in	Problems	Applications of Science
9–12 builds on K–8 experiences and	Criteria and constraints also include satisfying any	Influence of Science, Engineering, and Technology on
progresses to formulating, refining, and	requirements set by society, such as taking issues of	Society and the Natural World
evaluating empirically testable questions and	risk mitigation into account, and they should be	New technologies can have deep impacts on society
design problems using models and	<u>quantified to the extent possible and stated in such a</u>	and the environment, including some that were not
simulations.	way that one can tell if a given design meets them.	anticipated. Analysis of costs and benefits is a critical
Analyze complex real-world problems by	Humanity faces major global challenges today, such as	aspect of decisions about technology.
specifying criteria and constraints for	the need for supplies of clean water and food or for	
successful solutions.	energy sources that minimize pollution, which can be	
	addressed through engineering. These global	
	challenges also may have manifestations in local	
	<u>communities.</u>	
Connections to other DCIs in this grade-band	: Physical Science: HS-PS2-3, HS-PS3-3	
Articulation of DCIs across grade-bands: MS.	ETS1.A	
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11	-12.9	
NJSLS- Math: MP.2, MP.4		

Cliffside Park Public Schools

	PHYSICS	
HS-PS4-5: Waves and their Applications in To		a babayian and your interactions with
matter to transmit and capture information	on about how some technological devices use the principles of way	e benavior and wave interactions with
-	ude solar cells capturing light and converting it to electricity; medical	imaging: and communications technology
	ted to qualitative information. Assessments do not include band the	
Evidence Statements: HS-PS4-5		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
	PS3.D: Energy in Chemical Processes	Cause and Effect
Information	Solar cells are human-made devices that likewise capture the sun's	Systems can be designed to cause a
Obtaining, evaluating, and communicating	energy and produce electrical energy. (secondary)	desired effect.
information in 9–12 builds on K–8 and	PS4.A: Wave Properties	Connections to Engineering, Technology,
progresses to evaluating the validity and	Information can be digitized (e.g., a picture stored as the values of	and Applications of Science
reliability of the claims, methods, and	an array of pixels); in this form, it can be stored reliably in	Interdependence of Science, Engineering,
designs.	computer memory and sent over long distances as a series of wave	and Technology
Communicate technical information or ideas	<u>pulses.</u>	Science and engineering complement each
(e.g. about phenomena and/or the process	PS4.B: Electromagnetic Radiation	other in the cycle known as research and
of development and the design and	Photoelectric materials emit electrons when they absorb light of a	development (R&D).
performance of a proposed process or	high-enough frequency.	Influence of Engineering, Technology, and
system) in multiple formats (including orally,	PS4.C: Information Technologies and Instrumentation	Science on Society and the Natural World
graphically, textually, and mathematically).	Multiple technologies based on the understanding of waves and	Modern civilization depends on major
	their interactions with matter are part of everyday experiences in	technological systems.
	the modern world (e.g., medical imaging, communications,	
	scanners) and in scientific research. They are essential tools for	
	producing, transmitting, and capturing signals and for storing and	
	interpreting the information contained in them.	
Connections to other DCIs in this grade-band	1: HS.PS3.A	

Cliffside Park Public Schools

Articulation of DCIs acr	oss grade-bands: MS.PS4.A ; MS.PS4.B ; MS.PS4.C
NJSLS- ELA: WHST.9-12	2
NJSLS- Math: N/A	
	5E Model
HS-PS4-5: Communicate	e technical information about how some technological devices use the principles of wave behavior and wave interactions with
matter to transmit and	capture information and energy.
	How Photovoltaic Solar Cells Work
Engage	https://www.youtube.com/watch?v=x2zjdtxrisc
Anticipatory Set	Photoelectric Effect Demonstration
	https://www.youtube.com/watch?v=1d7EE1grbA0
	Simplified MRI
	While x-rays are used to image bones, magnetic resonance imaging (MRI) is used to examine tissues within the body by detecting
	where hydrogen atoms (H atoms) are and their environment (e.g. is the H atom part of water (H2O) or is it part of a long
	hydrocarbon chain as in a fat molecule).
Exploration	Simulation: https://phet.colorado.edu/en/simulation/legacy/mri
Student Inquiry	https://phet.colorado.edu/en/contributions/view/3003
	Microwave Simulation
	Microwave ovens use microwaves to increase the energy of water molecules.
	Simulation: https://phet.colorado.edu/en/simulation/legacy/microwaves
	https://phet.colorado.edu/en/contributions/view/3085
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Explanation	PS3.D: Energy in Chemical Processes
Concepts and Practices	Solar cells are human-made devices that likewise capture the sun's energy and produce electrical energy. (secondary)
	PS4.A: Wave Properties
	Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in
	computer memory and sent over long distances as a series of wave pulses.
	PS4.B: Electromagnetic Radiation

Cliffside Park Public Schools

	Photoelectric materials emit electrons when they absorb light of a high-enough frequency.
	PS4.C: Information Technologies and Instrumentation
	Multiple technologies based on the understanding of waves and their interactions with matter are part of everyday experiences in
	the modern world (e.g., medical imaging, communications, scanners) and in scientific research. They are essential tools for
	producing, transmitting, and capturing signals and for storing and interpreting the information contained in them.
	Solar Energy Science Projects
Elaboration	The final activity investigates the transformation of light to electrical energy. And how different wavelengths and intensity can
Extension Activity	affect the transformation to electricity.
	http://www.nrel.gov/education/pdfs/educational_resources/high_school/solar_projects_hs.pdf
	Assessment Task A: Communicate Technical Information
	When discussing technological devices in the above exploration activities students should:
	Use at least two different formats to communicate technical information and ideas, including fully describing at least two devices
Evaluation	and the physical principles upon which the devices depend.
Assessment Tasks	Identify the wave behavior utilized by the device for the absorption of protons and production of electrons for devices that rely on
	the photoelectric effect and qualitatively describe how the basic physic principles were utilized in the design.
	Discuss the real-world problem each device solves or needs it addresses and how civilization now depends on the device.
	Identify and communicate the cause and effect relationships that are used to produce the functionality of the device.

Cliffside Park Public Schools

		PHYSICS		
		ologies for Information Transfer		
		<u>ges of using a digital transmission and storage of in</u>		
		could include that digital information is stable becau		
		Disadvantages could include issues of easy deletion	, security, and theft.	
Assessment Boundary				
Evidence Statements:				
Science & Eng	gineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Asking Questions and	Defining Problems	PS4.A: Wave Properties	Stability and Change	
Asking questions and o	defining problems in grades	Information can be digitized (e.g., a picture stored	Systems can be designed for greater or lesser stability.	
9–12 builds from grad	es K–8 experiences and	as the values of an array of pixels); in this form, it	Connections to Engineering, Technology, and	
progresses to formula	<u>ting, refining, and</u>	can be stored reliably in computer memory and	Applications of Science	
evaluating empirically	testable questions and	sent over long distances as a series of wave pulses.	Influence of Engineering, Technology, and Science on	
design problems using	models and simulations.		Society and the Natural World	
Evaluate questions that	at challenge the premise(s)		Modern civilization depends on major technological	
of an argument, the in	terpretation of a data set,		<u>systems.</u>	
or the suitability of a c	<u>lesign.</u>		Engineers continuously modify these technological	
			systems by applying scientific knowledge and	
			engineering design practices to increase benefits while	
			decreasing costs and risks.	
Connections to other	DCIs in this grade-band: N/	A		
Articulation of DCIs ac	cross grade-bands: MS.PS4.	A ; MS.PS4.B ; MS.PS4.C		
NJSLS- ELA: RST.9-10.8	8, RST.11-12.1, RST.11-12.8			
NJSLS- Math: N/A				
		5E Model		
HS-PS4-2: Evaluate q	uestions about the advanta	ages of using a digital transmission and storage o	f information.	
F	Electronic Device			
Engage	http://www.ck12.org/pl	hysical-science/Electronic-Device-in-Physical-Science	e/lecture/CPU-How-It-Works/?referrer=concept_details	
Anticipatory Set	Physical Storage vs Digit	nysical Storage vs Digital Storage		

	https://mozy.com/blog/infographics/physical-storage-vs-digital-storage/
	Self-Driving Car Test
	https://www.youtube.com/watch?v=cdgQpa1pUUE
	Tattaas You Can Lisa
	Tattoos You Can Use
Exploration	Tiny electronic devices called "electronic tattoos" aren't real tattoos either, but someday you may wear them on your skin. In this
Student Inquiry	activity, students will view a video and then evaluate discussion questions.
	http://www.ck12.org/physical-science/Electronic-Device-in-Physical-Science/rwa/Tattoos-You-Can-Use/?referrer=concept_details
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS4.A: Wave Properties
	Information can be digitized (e.g., a picture stored as the values of an array of pixels); in this form, it can be stored reliably in
	computer memory and sent over long distances as a series of wave pulses.
	How to Build a Robot
Elaboration Extension Activity	Start building a robot that can follow lines or walls and avoid obstacles!
	http://www.allaboutcircuits.com/projects/build-your-own-robot-design-and-schematic/
Evaluation	Assessment Task A: Tattoos You Can Use- Evaluation
Evaluation	Students evaluate the given questions in terms of whether or not answers to the questions would provide means to empirically
Assessment Tasks	determine whether given features are advantages or disadvantages.

Cliffside Park Public Schools

including cost, safety, reliability, and aesthetics a Clarification Statement: N/A		<u>d trade-offs that account for a range of constraints,</u> mental impacts.
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories. Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.	ETS1.B: Developing Possible Solutions When evaluating solutions, it is important to take into account a range of constraints, including cost, safety, reliability, and aesthetics, and to consider social, cultural, and environmental impacts.	Connections to Engineering, Technology, and Application of Science Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated Analysis of costs and benefits is a critical aspect of decision about technology.
Connections to other DCIs in this grade-band: Ea Articulation of DCIs across grade-bands: MS.ETS1	• •	

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Unit 8: Overview

Unit 8: Electricity and Magnetism

Content Area: Physics

Pacing: 15 Instructional days

Essential Question

How can one explain and predict the interactions between objects and within a system of objects?

Student Learning Objectives (Performance Expectations)

HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

HS-PS3-5: Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Unit Summary

In this unit of study, students' understanding of how forces at a distance can be explained by fields, why some materials are attracted to each other while other are not, how magnets or electric currents cause magnetic fields, and how charges or changing magnetic fields cause electric fields. The crosscutting concept of cause and effect is called out as an organizing concept. Students are expected to demonstrate proficiency in planning and conducting investigations and developing and using models.

Technical	Terms
-----------	-------

Magnetism, electric currents, electric energy, magnetic fields

Formative Assessment Measures

Part A: What are the relationships between electric currents and magnetic fields?

Students who understand the concepts are able to:

Plan and conduct an investigation individually and collaboratively to produce data that can serve as the basis for evidence that an electric current can produce a magnetic field.

Plan and conduct an investigation individually and collaboratively to produce data that can serve as the basis for evidence that a changing magnetic field can produce an electric current.

In experimental design, decide on the types, amounts, and accuracy of data needed to produce reliable measurements, consider limitations on the precision of the data, and refine the design accordingly.

Collect empirical evidence to support the claim that an electric current can produce a magnetic field.

Collect empirical evidence to support the claim that a changing magnetic

field can produce an electric current.

Cliffside Park Public Schools

BOE APPROVAL: August 2016

Part B: How can I exert a force on an object when I can't touch it?

Students who understand the concepts are able to:

Develop and use an evidence-based model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Suggest and predict cause-and-effect relationships for two objects interacting through electric or magnetic fields.

Suggest and predict cause-and-effect relationships for two objects interacting through electric or magnetic fields.			
Interdisciplinary Connections			
NJSLS- ELA		NJSLS- Mathematics	
Conduct short as well as more sustained research projects to answer a questio (including a self-generated question) or solve a problem; narrow or broaden the inquiry when appropriate; synthesize multiple sources on the subject, demonstrating understanding of the subject under investigation. (HS-PS2-5),(HSPS3-5) WHST.9-12.7 Gather relevant information from multiple authoritative print and digital sources, using advanced searches effectively; assess the strengths and limitations of each source in terms of the specific task, purpose, and audience; integrate information into the text selectively to maintain the flow of ideas, avoiding plagiarism and overreliance on any one source and following a standard format for citation. (HS-PS2-5),(HS-PS3-5) WHST.11-12.8 Draw evidence from informational texts to support analysis, reflection, and research. (HS-PS2-5), (HS-PS3-5) WHST.9-12.9 Make strategic use of digital media (e.g., textual, graphical, audio, visual, and interactive elements) in presentations to enhance understanding of findings, reasoning, and evidence and to add interest. (HS-PS3-5) SL.11-12.5		Model with mathematics. (HS-PS3-5MP.4) Use units as a way to understand problems and to guide the solution of multi step problems; choose and interpret units consistently in formulas; choose and interpret the scale and the origin in graphs and data displays. (HS-PS2-5) HSN.Q.A.1 Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-5) HSN.Q.A.2 Choose a level of accuracy appropriate to limitations on measurement when reporting quantities. (HS-PS2-5) HSN.Q.A.3	
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.		
21st Century Life and Careers	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards	Standards 8.1.12, A.1, 8.1.12, A.2, 8.1.12, A.3, 8.1.12, A.4, 8.1.12, A.5, 8.1.12, E.1, 8.2.12, B.1, 8.2.12, B.4, 8.2.12, C.5		
Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities

Cliffside Park Public Schools

Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

	PHYSICS	
HS-PS2-5: Motion and Stability: Forces and Intera	actions	
HS-PS2-5: Plan and conduct an investigation to p	rovide evidence that an electric current can produce a	magnetic field and that a changing magnetic field
<u>can produce an electric current.</u>		
Clarification Statement: N/A		
Assessment Boundary: Assessment is limited to d	lesigning and conducting investigations with provided n	naterials and tools.
Evidence Statements: HS-PS2-5		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS2.B: Types of Interactions	Cause and Effect
Planning and carrying out investigations to	Newton's law of universal gravitation and Coulomb's	Empirical evidence is required to differentiate
answer questions or test solutions to problems in	law provide the mathematical models to describe and	between cause and correlation and make claims
9–12 builds on K–8 experiences and progresses	predict the effects of gravitational and electrostatic	about specific causes and effects.
to include investigations that provide evidence	forces between distant objects.	
for and test conceptual, mathematical, physical	Forces at a distance are explained by fields	
and empirical models.	(gravitational, electric, and magnetic) permeating	
Plan and conduct an investigation individually	space that can transfer energy through space.	
and collaboratively to produce data to serve as	Magnets or electric currents cause magnetic fields;	
the basis for evidence, and in the design: decide	electric charges or changing magnetic fields cause	
on types, how much, and accuracy of data	electric fields.	

Cliffside Park Public Schools

needed to produce reliab	le measurements and	PS3.A: Definitions of Energy	
consider limitations on th		"Electrical energy" may mean energy stored in a	
		battery or energy transmitted by electric currents.	
the design accordingly.		(secondary)	
Connections to other DC	Is in this grade-band: H	S.PS3.A ; HS.PS4.B ; HS.ESS2.A	
Articulation of DCIs acro	ss grade-bands: MS.PS1	.A ; MS.PS2.B ; MS.ESS1.B	
NJSLS- ELA: WHST.11-12	.7, WHST.11-12.8, WHS	Г.11-12.9	
NJSLS- Math: HSN.Q.A.1	, HSN.Q.A.2, HSN.Q.A.3		
		5E Model	
HS-PS2-5: Plan and cond	uct an investigation to p	provide evidence that an electric current can produce a	a magnetic field and that a changing magnetic field
<u>can produce an electric c</u>	<u>current.</u>		
	Understanding Electro	magnetic Induction	
Engage	https://www.youtube.com/watch?v=tC6E9J925pY		
Anticipatory Set	DC Motor: How it Works		
	https://www.youtube.com/watch?v=LAtPHANEfQo		
	Faraday Law and Electromagnet Lab		
	Using this simulation, students will predict how the current will change when the conditions are varied. They will then design an		
	experiment to determine how the size and direction of the induced current will change when the conditions are varied. Collect		
	data, make observations and record your information in a		
	table.		
		edu/en/contributions/view/2827	
Exploration	Magnetic Field Investi	-	
Student Inquiry		estigate the properties of magnetic fields around a bar i	nagnet.
	Lab Worksheet:		
	https://phet.colorado.edu/services/download-servlet?filename=%2Factivities%2F3903%2FPhET_NGSS+Fields+2+Student+Sheet+-		
	+Understand+and+Draw.pdf		
	Simulation: https://phet.colorado.edu/en/simulation/electric-hockey		
	Magnetism and Electric		
	•	ts will be charged with building a better electromagnet.	
	nttp://hendrix2.uoreg	on.edu/~dlivelyb/phys101/lab7_s07.pdf	

Cliffside Park Public Schools

Explanation In these lessons Concepts and Practices PS2.8: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Elaboration Extension Activity		
Explanation Concepts and PracticesStudents Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS2.B: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)Elaboration Extension ActivityExplaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		In these lessons
Explanation Concepts and PracticesTopics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS2.B: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)Elaboration Extension ActivityExplaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation Concepts and PracticesPS2.B: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)Elaboration Extension ActivityExplaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation Concepts and PracticesNewton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)Elaboration Extension ActivityExplaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and PracticesNewton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)Elaboration Extension ActivityExplaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.	Funlemetics	PS2.B: Types of Interactions
gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Eleboration Explaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of
through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric field PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary) Elaboration Extension Activity	Concepts and Practices	gravitational and electrostatic forces between distant objects.
PS3.A: Definitions of Energy "Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary) Elaboration Extension Activity Explaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy
"Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary) Elaboration Explaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		through space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
Elaboration Explaining Electrical Conductivity in Neurons Neurons are specialized to conduct electrical impulses using varied ion concentrations.		PS3.A: Definitions of Energy
Elaboration Extension Activity		"Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)
Neurons are specialized to conduct electrical impulses using varied ion concentrations.	Flak anation	Explaining Electrical Conductivity in Neurons
https://www.youtube.com/watch?v=bS_N-nMiqnM How transformers work		Neurons are specialized to conduct electrical impulses using varied ion concentrations.
	Extension Activity	https://www.youtube.com/watch?v=bS_N-nMiqnM How transformers work
Assessment Task A: Faraday Law and Electromagnet Lab		Assessment Task A: Faraday Law and Electromagnet Lab
Evaluation Students will be assessed on their experimental design.	Evaluation	Students will be assessed on their experimental design.
Assessment Tasks Assessment Task B: Magnetism and Electricity Lab	Assessment Tasks	Assessment Task B: Magnetism and Electricity Lab
Students will be assessed on the effectiveness of the electromagnet that they improve.		Students will be assessed on the effectiveness of the electromagnet that they improve.

Cliffside Park Public Schools

BOE APPROVAL: August 2016

PHYSICS

HS-PS3-5: Energy

HS-PS3-5: Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.

Assessment Boundary: Assessment is limited to systems containing two objects.

Evidence Statements: HS-PS3-5

Science 8	Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Developing and Using	g Models	PS3.C: Relationship Between Energy and Forces	Cause and Effect		
Modeling in 9–12 bui	<u>lds on K–8 and progresses to</u>	When two objects interacting through a field change	Cause and effect relationships can be		
using, synthesizing, a	nd developing models to predict	relative position, the energy stored in the field is	suggested and predicted for complex		
and show relationships among variables between		changed.	natural and human designed systems by		
systems and their components in the natural and			examining what is known about smaller		
designed worlds.			scale mechanisms within the system.		
Develop and use a mo	<u>odel based on evidence to</u>				
illustrate the relation	<u>ships between systems or</u>				
between components	<u>s of a system.</u>				
Connections to other	DCIs in this grade-band: HS.PS2.	3			
Articulation of DCIs a	across grade-bands: MS.PS2.B ; M	5.PS3.C			
NJSLS- ELA: WHST.9-:	12.7, WHST.11-12.8, WHST.9-12.9	, SL.11-12.5			
NJSLS- Math: MP.2, N	MP.4				
		5E Model			
HS-PS3-5: Develop ar	nd use a model of two objects inte	eracting through electric or magnetic fields to illustrate	the forces between objects and the changes		
<u>in energy of the obje</u>	cts due to the interaction.				
	Force on a Charged Particle N	Force on a Charged Particle Moving in A Magnetic Field			
Engage Anticipatory Set	https://www.youtube.com/w	https://www.youtube.com/watch?v=Gdh2srqH57M&list=PL66BFE4ED235C44D7			
	What Will Happen When the Earth's Magnetic Field Reverse				

Cliffside Park Public Schools

GRADE: 9-12

	http://www.smithsonianmag.com/science-nature/what-will-happen-when-earths-magnetic-field-begins-reverse-180951166/?no-is		
	Electric Field Lab		
	The objective of this lab is to explore electric field based on different charge configurations.		
Exploration	https://phet.colorado.edu/en/contributions/view/3992		
Student Inquiry	Electric Field Hockey		
	Determine the variables that affect how charged bodies interact and predict how charged bodies will interact.		
	https://phet.colorado.edu/en/contributions/view/2853		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.C: Relationship Between Energy and Forces		
	When two objects interacting through a field change relative position, the energy stored in the field is changed.		
	Drifting Into Current		
Elaboration	Students discover the definitions of current and drift speed in a reading exploration activity.		
Extension Activity	http://betterlesson.com/lesson/641911/drifting-into-current		
Extension Activity	http://www.smithsonianmag.com/science-nature/what-will-happen-when-earths-magnetic-field-begins-reverse-180951166/?no-is		
	<u>t</u>		
Evaluation Assessment Tasks	Assessment Task A: Electric Field Lab		
	https://phet.colorado.edu/en/contributions/view/3992		
	Student should use their models (drawings/diagrams) to:		
	Determine whether the energy stored in the field increased, decreased or remained the same when the objects interacted		
	Support the claim that the change in the energy stored in the field is consistent with the change in energy of the objects		
	Describe the cause and effect relationships on a qualitative level between forces produced by electric or magnetic fields and the		
	change of energy of the objects in the system.		