CHEMISTRY

HS-ESS2-4 Earth's Systems

HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.

Clarification Statement: Examples of the causes of climate change differ by timescale, over 1-10 years: large volcanic eruption, ocean circulation; 10-100s of years: changes in human activity, ocean circulation, solar output; 10-100s of thousands of years: changes to Earth's orbit and the orientation of its axis; and 10-100s of millions of years: long-term changes in atmospheric composition.

Assessment Boundary: Assessment of the results of changes in climate is limited to changes in surface temperatures, precipitation patterns, glacial ice volumes, sea levels, and biosphere distribution.

Evidence Statements: HS-ESS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	ESS1.B: Earth and the Solar System	Cause and Effect
Modeling in 9–12 builds on K–8 experiences and progresses to	Cyclical changes in the shape of Earth's orbit around the sun,	Empirical evidence is required to differentiate between cause
using, synthesizing, and developing models to predict and show	together with changes in the tilt of the planet's axis of rotation,	and correlation and make claims about specific causes and
relationships among variables between systems and their	both occurring over hundreds of thousands of years, have	<u>effects.</u>
components in the natural and designed world(s).	altered the intensity and distribution of sunlight falling on the	
	earth. These phenomena cause a cycle of ice ages and other	
	gradual climate changes. (secondary)	
Use a model to provide mechanistic accounts of phenomena.		
Connections to Nature of Science	ESS2.A: Earth Materials and Systems	
Scientific Knowledge is Based on Empirical Evidence	The geological record shows that changes to global and	
Science arguments are strengthened by multiple lines of	regional climate can be caused by interactions among changes	
evidence supporting a single explanation.	in the sun's energy output or Earth's orbit, tectonic events,	
	ocean circulation, volcanic activity, glaciers, vegetation, and	
	human activities. These changes can occur on a variety of time	
	scales from sudden (e.g., volcanic ash clouds) to intermediate	
	(ice ages) to very long-term tectonic cycles.	
	ESS2.D: Weather and Climate	
	The foundation for Earth's global climate systems is the	
	electromagnetic radiation from the sun, as well as its reflection,	
	absorption, storage, and redistribution among the atmosphere,	
	ocean, and land systems, and this energy's re-radiation into	
	space.	

Connections to other DCIs in this grade-band: HS.PS3.A; HS.PS3.B; HS.LS2.C; HS.ESS1.C; HS.ESS3.C; HS.ESS3.D

Articulation of DCIs across grade-bands: MS.PS3.A; MS.PS3.B; MS.PS3.D; MS.PS4.B; MS.LS2.C; MS.LS2.C; MS.ESS2.A; MS.ESS2.B; MS.ESS2.C; MS.ESS2.D; MS.ESS3.C; MS.ESS3.D

NJSLS- ELA: SL.11-12.5

NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3

5E Model	
HS-ESS2-4: Use a model to describe how variations in the flow of energy into and out of Earth's systems result in changes in climate.	
Engage	Climate Change: How Do We Know?
1	http://climate.nasa.gov/evidence/
	Earth's Energy Flows and Climate

I	http://www.pbslearningmedia.org/resource/pcep15-sci-ess-energyflows/earths-energy-flows-and-climate/
	In this lesson, students will learn how Earth's climate results from the ways that energy enters, circulates within, and flows out of the Earth system. Explore the flows of energy in regional locations and then at the global level to understand how the increased greenhouse effect causes global warming.
	From the given model in the lesson above, students will identify and describe the components of the model relevant for their mechanistic descriptions. Given models include at least one factor that affects the input of energy, at least one factor that affects the output of energy, and at least one factor that affects the storage and redistribution of energy. Factors are derived from the following list:
	- Changes in Earth's orbit and the orientation of its axis
Exploration	- Changes in the sun's energy output
Student Inquiry	- Configuration of continents resulting from tectonic activity
	- Ocean circulation
	- Atmospheric composition (including amount of water vapor and CO2)
	- Atmospheric circulation
	- Volcanic activity
	- Glaciation
	- Changes in extent or type of vegetation cover
	- Human activities
	From the given model, students identify the relevant different time scales on which the factors operate.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	ESS1.B: Earth and the Solar System
Explanation Concepts and Practices	Cyclical changes in the shape of Earth's orbit around the sun, together with changes in the tilt of the planet's axis of rotation, both occurring over hundreds of thousands of years, have altered the intensity and distribution of sunlight falling on the earth. These phenomena cause a cycle of ice ages and other gradual climate changes. (secondary)
Concepts and Fractices	ESS2.A: Earth Materials and Systems
	The geological record shows that changes to global and regional climate can be caused by interactions among changes in the sun's energy output or Earth's orbit,
	tectonic events, ocean circulation, volcanic activity, glaciers, vegetation, and human activities. These changes can occur on a variety of time scales from sudden
	(e.g., volcanic ash clouds) to intermediate (ice ages) to very long-term tectonic cycles.
	ESS2.D: Weather and Climate
	The foundation for Earth's global climate systems is the electromagnetic radiation from the sun, as well as its reflection, absorption, storage, and redistribution among the atmosphere, ocean, and land systems, and this energy's re-radiation into space.
Elaboration	Global Climate Change
Extension Activity	https://www3.epa.gov/climatechange/kids/resources/lesson-plans.html
	Assessment Task A:
Evaluation	Students use the given model to provide a mechanistic account of the relationship between energy flow in Earth's systems and changes in climate, including:
Assessment Tasks	1. The specific cause and effect relationships between the factors and the effect on energy flow into and out of Earth's systems; and
	2. The net effect of all of the competing factors in changing the climate.

CHEMISTRY

HS-ETS1-1 Engineering Design

HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and wants.

Clarification Statement: N/A
Assessment Boundary: N/A

Evidence Statements: HS-ETS1-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems		Connections to Engineering, Technology, and Applications of
		Science
Asking questions and defining problems in 9–12 builds on K–8	Criteria and constraints also include satisfying any	Influence of Science, Engineering, and Technology on Society
experiences and progresses to formulating, refining, and	requirements set by society, such as taking issues of risk	and the Natural World
evaluating empirically testable questions and design problems	mitigation into account, and they should be quantified to the	
using models and simulations.	extent possible and stated in such a way that one can tell if a	
	given design meets them.	
Analyze complex real-world problems by specifying criteria and	Humanity faces major global challenges today, such as the need	New technologies can have deep impacts on society and the
constraints for successful solutions.	for supplies of clean water and food or for energy sources that	environment, including some that were not anticipated.
	minimize pollution, which can be addressed through	Analysis of costs and benefits is a critical aspect of decisions
	engineering. These global challenges also may have	about technology.
	manifestations in local communities.	

Connections to other DCIs in this grade-band: HS-PS2-3, HS-PS3-3

Articulation of DCIs across grade-bands: MS.ETS1.A NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9

NJSLS- Math: MP.2, MP.4

CHEMISTRY

HS-ETS1-2 Engineering Design

HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through engineering.

Clarification Statement: N/A
Assessment Boundary: N/A

Evidence Statements: HS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution	
builds on K–8 experiences and progresses to explanations and	Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.	

Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.

Connections to other DCIs in this grade-band: HS-PS1-6, HS-PS2-3

Articulation of DCIs across grade-bands: MS.ETS1.A; MS.ETS1.B; MS.ETS1.C

NJSLS- ELA: N/A
NJSLS- Math: MP.4

CHEMISTRY

HS-ETS1-3 Engineering Design

HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.

Clarification Statement: N/A
Assessment Boundary: N/A

Evidence Statements: HS-ETS1-3

	Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Ī	Constructing Explanations and Designing Solutions	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and Applications of Science
	Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories. Evaluate a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff considerations.		Influence of Science, Engineering, and Technology on Society and the Natural World New technologies can have deep impacts on society and the environment, including some that were not anticipated. Analysis of costs and benefits is a critical aspect of decisions
			about technology.

Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6

Articulation of DCIs across grade-bands: MS.ETS1.A; MS.ETS1.B

NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9

NJSLS- Math: MP.2, MP.4

CHEMISTRY

HS-ETS1-4 Engineering Design

HS-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on interactions within and between systems relevant to the problem.

Clarification Statement: N/A

Assessment Boundary: N/A

dence Statements: HS-ETS1-4		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematics and Computational Thinking	ETS1.B: Developing Possible Solutions	Systems and Systems Models
Mathematical and computational thinking in 9-12 builds on K-8 experiences and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical models and/or computer simulations to predict the effects of a design solution on systems and/or the interactions between systems.	Both physical models and computers can be used in various ways to aid in the engineering design process. Computers are useful for a variety of purposes, such as running simulations to test different ways of solving a problem or to see which one is most efficient or economical; and in making a persuasive presentation to a client about how a given design will meet his or her needs.	Systems and System Models Models (e.g., physical, mathematical, computer models) can be used to simulate systems and interactions—including energy, matter, and information flows— within and between systems at different scales.
Connections to other DCIs in this grade-band: HS-LS2-7, HS-LS4-6		
Articulation of DCIs across grade-bands: MS.ETS1.A; MS.ETS1.B; MS.ETS1.C		
IJSLS- ELA: N/A		

NJSLS- Math: MP.2, MP.4