PHYSICS

HS-ESS1-4: Earth's Place in the Universe

HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.

Clarification Statement: Emphasis is on Newtonian gravitational laws governing orbital motions, which apply to human-made satellites as well as planets and moons.

Assessment Boundary: Mathematical representations for the gravitational attraction of bodies and Kepler's Laws of orbital motions should not deal with more than two bodies, nor involve calculus.

Evidence Statements: HS-ESS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematical and Computational Thinking	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity
Mathematical and computational thinking in 9–12 builds on K–	Kepler's laws describe common features of the motions of	Algebraic thinking is used to examine scientific data and predict
8 experiences and progresses to using algebraic thinking and	orbiting objects, including their elliptical paths around the sun.	the effect of a change in one variable on another (e.g., linear
analysis, a range of linear and nonlinear functions including	Orbits may change due to the gravitational effects from, or	growth vs. exponential growth).
trigonometric functions, exponentials and logarithms, and	collisions with, other objects in the solar system.	
computational tools for statistical analysis to analyze,		
represent, and model data. Simple computational simulations		
are created and used based on mathematical models of basic		
assumptions.		
Use mathematical or computational representations of		Connections to Engineering, Technology, and Applications of
phenomena to describe explanations.		Science
		Interdependence of Science, Engineering, and Technology
		Science and engineering complement each other in the cycle
		known as research and development (R&D). Many R&D
		projects may involve scientists, engineers, and others with wide
		ranges of expertise.

Connections to other DCIs in this grade-band: HS.PS2.B

Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS2.B ; MS.ESS1.A ; MS.ESS1.B

NJSLS- ELA: N/A

NJSLS- Math: MP.2, MP.4, HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3, HSA-SSE.A.1, HSA-CED.A.2, HSA-CED.A.4

	5E Model	
HS-ESS1-4: Use mathematical of	r computational representations to predict the motion of orbiting objects in the solar system.	
Engage Anticipatory Set	<u>Video: Gravity Visualized</u> <u>https://www.youtube.com/watch?v=MTY1Kje0yLg</u>	
	Gravity, Orbits and Kepler's Law https://phet.colorado.edu/en/contributions/view/3874	
Exploration Student Inquiry	Satellite Motion Lab In this activity, students will experiment with satellite motion using an interactive simulation, gaining an understanding of Kepler's Laws of Satellite Motion and Newton's Synthesis. https://phet.colorado.edu/en/contributions/view/3709	

	Going Full Circle on Gravity and Orbits- Day 1
	In this lesson, students apply the circular motion equations to Newton's Universal Law of Gravity to derive circular orbit equations.
	http://betterlesson.com/lesson/637802/going-full-circle-on-gravity-and-orbits-day-1
	Going Full Circle on Gravity and Orbits- Day 2 In this lesson, students determine that satellites in a certain orbit are geostationary based on observations and what they know about orbital periods.
	In these lessons
Explanation Concepts and Practices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	ESS1.B: Earth and the Solar System
	Kepler's laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may change due to the gravitational effects from, or collisions with, other objects in the solar system.
Elaboration Extension Activity	Tides
	Students will graph the tides in a region over a multi-day period to explain the factors which influence tides on the Earth and draw or identify the positions of the Earth, Moon, and Sun given specific tidal conditions.
	http://betterlesson.com/lesson/641869/tides
	Assessment Task A: In the activities above, students will use mathematical representations to predict orbital changes in the solar system.
Evaluation	
ASSESSITIETIL TOSKS	