PHYSICS

HS-PS3-2: Energy

HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).

Clarification Statement: Examples of phenomena at the macroscopic scale could include the conversion of kinetic energy to thermal energy, the energy stored due to position of an object above the earth, and the energy stored between two electrically-charged plates. Examples of models could include diagrams, drawings, descriptions, and computer simulations.

Assessment Boundary: N/A

Evidence Statements: HS-PS3-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	PS3.A: Definitions of Energy	Energy and Matter
Modeling in 9–12 builds on K–8 and progresses to using,	Energy is a quantitative property of a system that depends on	Energy cannot be created or destroyed—only moves between
synthesizing, and developing models to predict and show	the motion and interactions of matter and radiation within that	one place and another place, between objects and/or fields, or
relationships among variables between systems and their	system. That there is a single quantity called energy is due to	between systems.
components in the natural and designed worlds.	the fact that a system's total energy is conserved, even as,	
	within the system, energy is continually transferred from one	
	object to another and between its various possible forms.	
Develop and use a model based on evidence to illustrate the	At the mecroscopic code, energy menifects itself in multiple	
relationships between systems or between components of a	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.	
<u>system.</u>	ways, such as in motion, sound, light, and thermal energy.	
	These relationships are better understood at the microscopic	
	scale, at which all of the different manifestations of energy can	
	be modeled as a combination of energy associated with the	
	motion of particles and energy associated with the	
	configuration (relative position of the particles). In some cases	
	the relative position energy can be thought of as stored in	
	fields (which mediate interactions between particles). This last	
	concept includes radiation, a phenomenon in which energy	
	stored in fields moves across space.	
Connections to other DCIs in this grade-band: HS.PS1.A ; HS.PS2	I.B ; HS.PS2.B	
Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS2.B ;	MS.PS3.A ; MS.PS3.C	

NJSLS- ELA: SL.11-12.5

NJSLS- Math: MP.2, MP.4

5E Model

HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the motions of particles (objects) and energy associated with the relative positions of particles (objects).

Engage	Video: Energy Lost When a Ball Bounces (Can be done as classroom demonstration)
Anticipatory Set	https://www.youtube.com/watch?v=ZSOxVwTv58Q
	Skatepark Energy
	Students learn the concepts of kinetic and potential energy as they explore a skateboard simulation.
	http://betterlesson.com/lesson/638233/skate-park-energy

	Skatepark Energy Revisited
	Students determine how friction and the shape of the ramp impact the transformation of potential into kinetic energy.
Exploration	http://betterlesson.com/lesson/638235/skate-park-energy-revisited
Student Inquiry	
	Venn Diagram of Kinetic and Potential Energies
	Students compare and contrast kinetic energy and potential energy by creating a Venn Diagram of the two types of energy.S
	http://betterlesson.com/lesson/638234/venn-diagram-of-kinetic-and-potential-energies
	Simple Pendulum Lab
	https://phet.colorado.edu/en/contributions/view/3591
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS3.A: Definitions of Energy
Explanation	Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system. That there is a single
Concepts and Practices	quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system, energy is continually transferred from one object to another and between its various possible forms.
	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.
	These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be modeled as a combination of
	energy associated with the motion of particles and energy associated with the configuration (relative position of the particles). In some cases the relative
	position energy can be thought of as stored in fields (which mediate interactions between particles). This last concept includes radiation, a phenomenon in which
	energy stored in fields moves across space.
	Swinging Pendulum
Elaboration	https://www.teachengineering.org/Activities/view/cub_energy_lesson03_activity2
Extension Activity	Related Activities
	http://www.ck12.org/ngss/high-school-physical-sciences/energy/
	Assessment Task A: Energy Skate Park- Bar Graph Model
	http://betterlesson.com/lesson/resource/3218871/energy-skate-park?from=resource_image_
Evaluation	
Assessment Tasks	Assessment Task B: Kinetic and Potential Energy Venn Diagram
	http://betterlesson.com/lesson/638234/venn-diagram-of-kinetic-and-potential-energies