

GRADE: 8

Grade 8: Integrated Science New Jersey PRACTICES **Student Learning Standards** SCIENCE

Cliffside Park Public Schools

Unit 1: Overview
Unit 1: Evidence of a Common Ancestry
Grade: 8
Content Area: Life Science
Pacing: 20 Instructional Days
Essential Questions
How do we know when an organism (fossil) was alive?
How do we know that birds and dinosaurs are related?
Student Learning Objectives (Performance Expectations)
MS-LS4-1. Analyze and interpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms throughout
the history of life on Earth under the assumption that natural laws operate today as in the past.
MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern
and fossil organisms to infer evolutionary relationships.
MS-LS4-3. Analyze displays of pictorial data to compare patterns of similarities in the embryological development across multiple species to identify
relationships not evident in the fully formed anatomy.
Unit Summary
In this unit of study, students analyze graphical displays and gather evidence from multiple sources in order to develop an understanding of how fossil records
and anatomical similarities of the relationships among organisms and species describe biological evolution. Students search for patterns in the evidence to
support their understanding of the fossil record and how those patterns show relationships between modern organisms and their common ancestors. The
crosscutting concepts of cause and effect, patterns, and structure and function are called out as organizing concepts for these disciplinary core ideas. Students
use the practices of analyzing graphical displays and gathering, reading, and communicating information. Students are also expected to use these practices to demonstrate understanding of the core ideas
Technical Terms
Technical Terms
appearance anatomy empryological development macroscopic sediment amber radiometric dating relative dating chronometric cladograms
homologous structure mornhology DNA trait cladistics embryos nonlinear relationshins
Formative Assessment Measures
Part A: How do we know when an organism (fossil) was alive?
Students who understand the concepts are able to:
Use graphs, charts, and images to identify patterns within the fossil record.
Analyze and interpret data within the fossil record to determine similarities and differences in findings.
Make logical and conceptual connections between evidence in the fossil record and explanations about the existence, diversity, extinction, and change in
many life forms throughout the history of life on Earth.

BOE APPROVAL: August 2016

Part B: How do we know that birds and dinosaurs are related?

Students who understand the concepts are able to:

Apply scientific ideas to construct explanations for evolutionary relationships.

Apply the patterns in gross anatomical structures among modern organisms and between modern organisms and fossil organisms to construct explanations of evolutionary relationships.

Apply scientific ideas about evolutionary history to construct an explanation for evolutionary relationships evidenced by similarities or differences in the gross appearance of anatomical structures.

Part C: Other than bones and structures being similar, what other evidence is there that birds and dinosaurs are related?

Students who understand the concepts are able to:

Use diagrams or pictures to identify patterns in embryological development across multiple species.

Analyze displays of pictorial data to identify where the embryological development is related linearly and where that linear nature ends.

Infer general patterns of relatedness among embryos of different organisms by comparing the macroscopic appearance of diagrams or pictures.

Interdisciplinary Connections

NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to support analysis of science and	Use variables to represent numbers and write expressions when solving a real-world or
technical texts, attending to the precise details of explanations or	mathematical problem; understand that a variable can represent an unknown number,
descriptions. (MS-LS4-1),(MS-LS4-2),(MS-LS4-3) RST.6-8.1	or, depending on the purpose at hand, any number in a specified set.
Integrate quantitative or technical information expressed in words in	(MS-LS4-1),(MS-LS4-2) 6.EE.B.6
a text with a version of that information expressed visually (e.g., in a	
flowchart, diagram, model, graph, or table). (MS-LS4-1),(MS-LS4-3)	
RST.6-8.7	
Compare and contrast the information gained from experiments,	
simulations, video, or multimedia sources with that gained from	
reading a text on the same topic. (MS-LS4-3) RST.6-8.9	
Write informative/explanatory texts to examine a topic and convey	
ideas, concepts, and information through the selection, organization,	
and analysis of relevant content. (MS-LS4-2) WHST.6-8.2	
Draw evidence from informational texts to support analysis,	
reflection, and research. (MS-LS4-2) WHST.6-8.9	
Engage effectively in a range of collaborative discussions	
(one-on-one, in groups, teacher-led) with diverse partners on grade 6	
topics, texts, and issues, building on others' ideas and expressing	
their own clearly. (MS-LS4-2) SL.8.1	
Present claims and findings, emphasizing salient points in a focused,	

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

coherent manner with relevant evidence, sound valid reasoning, and			
well-chosen details; use appropriate eye contact, adequate volume,			
and clear pronunciation. (MS-LS4-2	2) SL.8.4		
Core Instructional Materials	Can include: Textbooks Series, Lab	Materials, etc.	
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, C	RP8 ,CRP11,CRP12	
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.	8.A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.E.1,	
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

	LIFE SCIENCE	
MS-LS4-1 Biological Evolution: Unity and Diversity		
MS-LS4-1. Analyze and interpret data for patterns in	n the fossil record that document the existence, o	diversity, extinction, and change of life forms
throughout the history of life on Earth under the as	<u>sumption that natural laws operate today as in t</u>	he past.
Clarification Statement: Emphasis is on finding patter	erns of changes in the level of complexity of anato	mical structures in organisms and the chronological
order of fossil appearance in the rock layers.		
Assessment Boundary: Assessment does not include	the names of individual species or geological eras	s in the fossil record.
Evidence Statements: MS-LS4-1		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	LS4.A: Evidence of Common Ancestry and	Patterns
Analyzing data in 6–8 builds on K–5 experiences and	<u>Diversity</u>	Graphs, charts, and images can be used to identify
progresses to extending quantitative analysis to	The collection of fossils and their placement in	patterns in data.
investigations, distinguishing between correlation	chronological order (e.g., through the location of	Connections to Nature of Science
and causation, and basic statistical techniques of	the sedimentary layers in which they are found	Scientific Knowledge Assumes an Order and
data and error analysis.	or through radioactive dating) is known as the	Consistency in Natural Systems
Analyze and interpret data to determine similarities	fossil record. It documents the existence,	Science assumes that objects and events in natural
and differences in findings.	diversity, extinction, and change of many life	systems occur in consistent patterns that are
Connections to Nature of Science	forms throughout the history of life on Earth.	understandable through measurement and
Scientific Knowledge is Based on Empirical		observation.
Evidence		
Science knowledge is based upon logical and		
conceptual connections between evidence and		
explanations.		
Connections to other DCIs in this grade-band: MS.ESS1.C ; MS.ESS2.B		
Articulation of DCIs across grade-bands: 3.LS4.A ; HS.LS4.A ; HS.ESS1.C		
NJSLS- ELA: RST.6-8.1, RST.6-8.7		
NJSLS- Math: 6.EE.B.6		
	SE Model	

MS-LS4-1. Analyze and i	nterpret data for patterns in the fossil record that document the existence, diversity, extinction, and change of life forms	
throughout the history o	of life on Earth under the assumption that natural laws operate today as in the past.	
	What Are Fossils	
	http://www.ck12.org/biology/Fossils/lecture/user:13IntC/What-are-fossils/?referrer=concept_details&conceptLevel=&conceptSo_	
	urce=all	
	Show several different fossils or pictures of fossils (diverse types of fossils and fossils from different time periods) and ask students	
Engage	what characteristics the fossils have and how they compare to organisms that still exist today – identify names of present day	
Anticipatory Set	organisms similar to the fossilized organisms	
	How is the present day organism SIMILAR to the extinct species? WHY are the two species similar?	
	How is the present day organism DIFFERENT than the extinct species? WHY are the two species different?	
	http://www.fossilmuseum.com/	
	http://www.bbc.co.uk/nature/fossils	
	Fossil Evidence for Evolution	
Exploration	http://www.pbslearningmedia.org/resource/tdc02.sci.life.evo.lp_fossilevid/the-fossil-evidence-for-evolution/	
Student Inquiry	In this lesson, students will learn how scientists find evidence of evolution and piece together the history of life. Students will learn	
	about the fossil record, the primary form of evidence, as well as the fossil formation process and the evolution of animals.	
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
Concepts and Practices	LS4.A: Evidence of Common Ancestry and Diversity	
	The collection of fossils and their placement in chronological order (e.g., through the location of the sedimentary layers in which	
	they are found or through radioactive dating) is known as the fossil record. It documents the existence, diversity, extinction, and	
	change of many life forms throughout the history of life on Earth.	
Elaboration	Related Activities	
Extension Activity	Better Lessons: MS-LS4-1	
	Assessment Task A: Whale Evolution Timeline (Part 3 Step 10 of lesson plan from PBS learning website)	
Evaluation	Ask each team of two to prepare an Eocene epoch timeline on paper, using the same scale as the classroom model (one inch	
Assessment Tasks	equals one million years). Their timelines should be twenty-one inches long, with each million years labeled.	
	Whales in the Making	

Cliffside Park Public Schools

GRADE: 8

Using the images provided on the Whales in the Making worksheet, students will create timeline which represents the evolution of
whales.
Assessment Task B: Discussion Questions
Analyze and interpret data to determine similarities and differences in findings.
After creating the timeline, students should use the following discussion questions to interpret and analyze the data collected.
What typical whale like traits were apparently the earliest to appear? What apparently evolved much later?
As each "missing link" was found, how many new gaps were formed? What is the relationship between gaps and fossils?
To find fossil evidence to fill the largest remaining gap in whale evolution, what age sediments would you search?
What distinguishing traits would you expect to find in whale fossils of that age?
Explain why the absence of transitional fossils does not mean that evolution didn't take place.

LIFE SCIENCE

MS-LS4-2 Biological Evolution: Unity and Diversity

MS-LS4-2. Apply scientific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between modern and fossil organisms to infer evolutionary relationships.

Clarification Statement: Emphasis is on explanations of the evolutionary relationships among organisms in terms of similarity or differences of the gross appearance of anatomical structures.

Assessment Boundary: N/A

Evidence Statements: MS-LS4-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions	LS4.A: Evidence of Common Ancestry and	Patterns
Constructing explanations and designing solutions in	<u>Diversity</u>	Patterns can be used to identify cause and effect
6–8 builds on K–5 experiences and progresses to include	Anatomical similarities and differences	relationships.
constructing explanations and designing solutions	between various organisms living today and	Connections to Nature of Science
supported by multiple sources of evidence consistent	between them and organisms in the fossil	Scientific Knowledge Assumes an Order and
with scientific ideas, principles, and theories.	record, enable the reconstruction of	Consistency in Natural Systems
Apply scientific ideas to construct an explanation for	evolutionary history and the inference of	Science assumes that objects and events in natural
real-world phenomena, examples, or events.	lines of evolutionary descent.	systems occur in consistent patterns that are

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

	understandable through measurement and
	observation.
Connections to other D	Cls in this grade-band: MS.LS3.A ; MS.LS3.B ; MS.ESS1.C
Articulation of DCIs acr	oss grade-bands: 3.LS4.A ; HS.LS4.A ; HS.ESS1.C
NJSLS- ELA: RST.6-8.1,	WHST.6-8.2, WHST.6-8, SL.8.1, SL.8.4
NJSLS- Math: 6.EE.B.6	
	5E Model
MS-LS4-2. Apply scient	ific ideas to construct an explanation for the anatomical similarities and differences among modern organisms and between
modern and fossil orga	nisms to infer evolutionary relationships.
Engago	Students will compare images of an elephant shrew, an elephant, and a shrew to predict which two are most closely related based on
Anticipatory Set	observable anatomical characteristics
Anticipatory Set	https://www.sciencenews.org/article/elephant-shrews-are-oddly-related-actual-elephants
	<u>Cladistics</u>
	Students will infer evolutionary relationships using a cladogram.
	http://betterlesson.com/lesson/638611/cladistics
Exploration	
Student Inquiry	
	Evolution - Homologous Structures & Embryology
	Students will be able to identify similarities in morphology and early embryo development as evidence for evolution
	http://betterlesson.com/lesson/638268/evolution-homologous-structures-embryology
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
r	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	LS4.A: Evidence of Common Ancestry and Diversity
	Anatomical similarities and differences between various organisms living today and between them and organisms in the fossil record,
	enable the reconstruction of evolutionary history and the inference of lines of evolutionary descent.
Elaboration	Additional Cladogram Activities
Extension Activity	http://www.isd622.org/cms/lib07/MN01001375/Centricity/Domain/718/Learning_Target_4.6_Cladograms.pdf

Cliffside Park Public Schools

	http://www.biologycorner.com/worksheets/cladogram.html#.VXBu00a8qSo
	http://chapin.episd.org/common/pages/DisplayFile.aspx?itemId=3070611
	Assessment Task A: Evaluate the accuracy of the completed Cladogram that student built in the Cladistics activity.
	Assessment Task B: Closing Explanation
Evaluation	Apply scientific ideas to construct an explanation for real-world phenomena, examples, or events.
Assossment Tasks	At the end of the lesson, pose the following question to students
ASSESSMENT TASKS	In your opinion, what is the most compelling evidence for evolution. Why? Encourage students to use the ACE strategy to answer.
	See link below.
	ACE Strategy

Cliffside Park Public Schools

		LIFE SCIENCE	
MS-LS4-3 Biological E [,]	volution: Unity and Diversity		
MS-LS4-3. Analyze dis	splays of pictorial data to compare	patterns of similarities in the embryological develog	ment across multiple species to identify
<u>relationships not evid</u>	lent in the fully formed anatomy.		
Clarification Statemer	nt: Emphasis is on inferring general	patterns of relatedness among embryos of different	organisms by comparing the macroscopic
appearance of diagrar	ns or pictures.		
Assessment Boundary	y: Assessment of comparisons is lim	nited to gross appearance of anatomical structures in	embryological development.
Evidence Statements:	<u>MS-LS4-3</u>		
Science &	Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpr	<u>eting Data</u>	LS4.A: Evidence of Common Ancestry and Diversity	Patterns
Analyzing data in 6–8	builds on K–5 experiences and	Comparison of the embryological development of	Graphs, charts, and images can be used to
progresses to extendir	<u>ng quantitative analysis to</u>	different species also reveals similarities that show	identify patterns in data.
investigations, disting	uishing between correlation and	relationships not evident in the fully-formed	
causation, and basic st	tatistical techniques of data and	<u>anatomy.</u>	
error analysis.			
Analyze displays of da	ta to identify linear and nonlinear		
relationships.			
Connections to other	DCIs in this grade-band: N/A		
Articulation of DCIs ad	cross grade-bands: HS.LS4.A		
NJSLS- ELA: RST.6-8.1,	, RST.6-8.7, RST.6-8.9		
NJSLS- Math: N/A			
		5E Model	
MS-LS4-3. Analyze dis	splays of pictorial data to compare	<u>patterns of similarities in the embryological develop</u>	ment across multiple species to identify
relationships not evid	lent in the fully formed anatomy.		
Engage	Guess the Embryo Interactive		
Anticipatory Set	http://www-tc.pbs.org/wgbh/nc	va/assets/swt/1/embryo/embryo.swt	
Exploration	Embryo Comparison Activity		
Student Inquiry	Given pictorial data, students wi	Il compare patterns of similarities in embryos to ident	ify relationships across multiple species

Cliffside Park Public Schools

	Which of the identified characteristics are still present in the fully formed anatomy of each species?
	Exploration Questions
	What does the presence or absence of embryological characteristics in the fully formed anatomy suggest about relationships among
	these species?
	Embryonic Development- Evidence for Evolution
	In this activity, students will analyze displays of pictorial data to compare patterns of similarities in the embryological development
	across multiple species to identify relationships not evident in the fully formed anatomy.
	http://betterlesson.com/lesson/637398/embryonic-development-evidence-for-evolution
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Evaluation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
concepts and Practices	LS4.A: Evidence of Common Ancestry and Diversity
	Comparison of the embryological development of different species also reveals similarities that show relationships not evident in the
	fully-formed anatomy.
Elaboration	Related Activities
Extension Activity	http://www.ck12.org/search/?q=MS-LS4-3&referrer=top_nav&autoComplete=false
	Assessment Task A: Embryonic Development Exit Slip
Evaluation	Analyze displays of data to identify linear and nonlinear relationships.
Assessment Tasks	Students complete an Exit Slip, where they are required to write a scientific explanation on how embryo development across species
	is evidence for evolution.
1	

Cliffside Park Public Schools

Unit 2: Overview
Unit 2: Selection and Adaptation
Grade: 8
Content Area: Life Science
Pacing: 20 Instructional Days
Essential Question
Are Genetically Modified Organisms (GMO) safe to eat?
Student Learning Objectives (Performance Expectations)
MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals' probability of
surviving and reproducing in a specific environment.
MS-LS4-5. Gather and synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in
organisms.
MS-LS4-6. Use mathematical representations to support explanations of how natural selection may lead to increases and decreases of specific traits in
populations over time.
Unit Summary
Students construct explanations based on evidence to support fundamental understandings of natural selection and evolution. They will use ideas of genetic
variation in a population to make sense of how organisms survive and reproduce, thus passing on the traits of the species. The crosscutting concepts of
patterns and structure and function are called out as organizing concepts that students use to describe biological evolution. Students use the practices of
constructing explanations, obtaining, evaluating, and communicating information, and using mathematical and computational thinking. Students are also
expected to use these practices to demonstrate understanding of the core ideas.
Technical Terms
Natural selection, genetics, traits, probability, proportional reasoning, inheritance, artificial selection, genetic modifications, animal husbandry, gene therapy,
mathematical models, adaptations, variables, Darwin Theory, genetic technology, selective breeding, extinct, transgenic, consumer, domestic, clone,
synthesize, mutation, camouflage, industrial melanism, entomologist, simulation
Formative Assessment Measures
Part A: How can changes to the genetic code increase or decrease an individual's chances of survival?
Students who understand the concepts are able to:
Construct an explanation that includes probability statements regarding variables and proportional reasoning of how genetic variations of traits in a
population increase some individuals' probability surviving and reproducing in a specific environment.

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

Use probability to describe some cause-and-effect relationships that can be used to explain why some individuals survive and reproduce in a specific environment.

Part B: How can the environment affect natural selection?

Students who understand the concepts are able to:

Explain some causes of natural selection and the effect it has on the increase or decrease of specific traits in populations over time.

Use mathematical representations to support conclusions about how natural selection may lead to increases and decreases of genetic traits in populations over time.

Part C: Are Genetically Modified Organisms (GMO) safe to eat?

Students who understand the concepts are able to:

Gather, read, and synthesize information about technologies that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection) from multiple appropriate sources.

Describe how information from publications about technologies and methods that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection) used are supported or not supported by evidence.

Assess the credibility, accuracy, and possible bias of publications and the methods they used when gathering information about technologies that have changed the way humans influence the inheritance of desired traits in organisms (artificial selection).

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science and technical	Model with mathematics. (MS-LS4-6) MP.4		
texts, attending to the precise details of explanations or descriptions.	Understand the concept of a ratio and use ratio language to describe a ratio		
(MS-LS4-4),(MS-LS4-5) RST.6-8.1	relationship between two quantities. (MS-LS4-4),(MS-LS4-6) 6.RP.A.1		
Compare and contrast the information gained from experiments,	Summarize numerical data sets in relation to their context. (MS-LS4-4),(MS-LS4-6)		
simulations, videos, or multimedia sources with that gained from reading	6.SP.B.5		
a text on the same topic. (MS-LS4-4) RST.6-8.9	Recognize and represent proportional relationships between quantities.		
Write informative/explanatory texts to examine a topic and convey ideas,	(MS-LS4-4),(MS-LS4-6) 7.RP.A.2		
concepts, and information through the selection, organization, and			
analysis of relevant content. (MS-LS4-4) WHST.6-8.2			
Gather relevant information from multiple print and digital sources, using			
search terms effectively; assess the credibility and accuracy of each			
source; and quote or paraphrase the data and conclusions of others			

Cliffside Park Public Schools

while avoiding plagiarism and following a standard format for citation.			
(MS-LS4-5) WHST.6-8.8			
Draw evidence from informational	texts to support analysis, reflection,		
and research. (MS-LS4-4) WHST.6-8	3.9		
Engage effectively in a range of coll	aborative discussions (one-on-one, in		
groups, teacher-led) with diverse pa	artners on grade 6 topics, texts, and		
issues, building on others' ideas and	d expressing their own clearly.		
(MS-LS4-4) SL.8.1			
Present claims and findings, empha	sizing salient points in a focused,		
coherent manner with relevant evid	dence, sound valid reasoning, and		
well-chosen details; use appropriate	e eye contact, adequate volume, and		
clear pronunciation. (MS-LS4-4) SL.8.4			
Core Instructional Materials Can include: Textbooks Series, Lab Ma		1aterials, etc.	
21st Century Life and Careers	ry Life and Careers CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8, CRP11, CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A	A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.E.1	
Moc		Nodifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

Cliffside Park Public Schools

LIFE SCIENCE			
MS-LS4-4 Biological Evolution: Unity and Diversity			
MS-LS4-4. Construct an explanation based on evidence t	hat describes how genetic variations of traits in a population	n increase some individuals'	
probability of surviving and reproducing in a specific env	ironment.		
Clarification Statement: Emphasis is on using simple prob	ability statements and proportional reasoning to construct ex	xplanations.	
Assessment Boundary: N/A			
Evidence Statements: MS-LS4-4			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing Solutions	LS4.B: Natural Selection	Cause and Effect	
Constructing explanations and designing solutions in 6–8	Natural selection leads to the predominance of certain traits	Phenomena may have more than one	
builds on K–5 experiences and progresses to include	in a population, and the suppression of others.	cause, and some cause and effect	
constructing explanations and designing solutions		relationships in systems can only be	
supported by multiple sources of evidence consistent		described using probability.	
with scientific ideas, principles, and theories.			
Construct an explanation that includes qualitative or			
quantitative relationships between variables that			
describe phenomena.			
Connections to other DCIs in this grade-band: MS.LS2.A ;	MS.LS3.A ; MS.LS3.B		
Articulation of DCIs across grade-bands: 3.LS3.B ; 3.LS4.B	; HS.LS2.A ; HS.LS3.B ; HS.LS4.B ; HS.LS4.C		
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.2, WHST.6-8.	9, SL.8.1, SL.8.4		
NJSLS- Math: 6.RP.A.1, 6.SP.B.5, 7.RP.A.2			
5E Model			
MS-LS4-4. Construct an explanation based on evidence that describes how genetic variations of traits in a population increase some individuals'			
probability of surviving and reproducing in a specific environment.			
Peppered Moth Simulation	L		
Engage http://peppermoths.weeb	l <u>y.com/</u>		
Anticipatory Set Peppered Moth Activity			
http://betterlesson.com/le	esson/637464/peppered-moths		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

	What is Evolution
Exploration	In this activity, students will construct an explanation based on evidence that describes how genetic variation of traits in a
Student Inquiry	population increase some individual's probability of surviving and reproducing in a specific environment.
	http://betterlesson.com/lesson/636016/what-is-evolution
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	LS4.B: Natural Selection
	Natural selection leads to the predominance of certain traits in a population, and the suppression of others.
	Related Lessons
Elaboration	http://betterlesson.com/next_gen_science/browse/2239/ngss-ms-ls4-6-use-mathematical-representations-to-support-explan
Extension Activity	ations-of-how-natural-selection-may-lead-to-increases-and-decrea
	Assessment Task A:
	Construct an explanation that includes qualitative or quantitative relationships between variables that describe phenomena.
	To end the lesson, go through Recipe For Evolution: Variation, Selection & Time which is a resource from Learn. Genetics
	Genetic Science Learning Center which is a wonderful resource on a large variety of biology topics. This reinforces some of the
	things the students should have learned by doing the simulations.
	To assess student learning, have students write a response to the following prompt in their journal: explain how genetic
Evaluation	variation of traits in a population increase some individual's probability of surviving and reproducing in a specific environment.
Assessment Tasks	Use evidence from your investigations to support your answer. As this is a formative assessment, use a 3 point scale to assess
	this journal entry:
	3 - Demonstrates strong understanding of the concept.
	2 - Demonstrates good understanding of the concept with only minor misunderstandings
	1 - Demonstrates poor understanding of the concept with major misunderstandings
	Meet with students who scored a 1 to ensure that their misunderstandings are cleared up before moving on to the next
	lesson.

Cliffside Park Public Schools

LIFE SCIENCE			
MS-LS4-5 Biological Evolution: Unity and Diversity			
MS-LS4-5. Gather and synthesize information	about the technologies that have changed the	way humans influence the inheritance of desired traits in	
organisms.			
Clarification Statement: Emphasis is on synthe	sizing information from reliable sources about t	the influence of humans on genetic outcomes in artificial	
selection (such as genetic modification, animal	husbandry, gene therapy); and, on the impacts	these technologies have on society as well as the technologies	
leading to these scientific discoveries.			
Assessment Boundary: N/A			
Evidence Statements: MS-LS4-5			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Obtaining, Evaluating, and Communicating	LS4.B: Natural Selection	Cause and Effect	
Information	in artificial selection, numans have the	Phenomena may have more than one cause, and some cause	
Ubtaining, evaluating, and communicating	capacity to influence certain characteristics of	and effect relationships in systems can only be described using	
Information in 6–8 builds on K–5 experiences	organisms by selective breeding. One can	probability.	
and progresses to evaluating the ment and	choose desired parental traits determined by	Connections to Engineering, Technology, and Applications of	
Gather read and synthesize information from	genes, which are then passed onto onspring.	Interdependence of Science, Engineering, and Technology	
multiple appropriate sources and assess the		Engineering advances have led to important discoveries in	
credibility, accuracy, and possible bias of each		virtually every field of science, and scientific discoveries have	
publication and methods used, and describe		led to the development of entire industries and engineered	
how they are supported or not supported by		systems.	
evidence.		Connections to Nature of Science	
		Science Addresses Questions About the Natural and Material	
		World	
		Scientific knowledge can describe the consequences of actions	
		but does not necessarily prescribe the decisions that society	
		takes.	
Connections to other DCIs in this grade-band: N/A			
Articulation of DCIs across grade-bands: HS.LS	3.B ; HS.LS4.C		

BOE APPROVAL: August 2016

NJSLS- ELA: RST.6-8.1,	WHST.6-8.8
NJSLS- Math: N/A	
	5E Model
MS-LS4-5. Gather and s	synthesize information about the technologies that have changed the way humans influence the inheritance of desired traits in
organisms.	
	Video: Classical vs. Transgenic Breeding
Engage	http://www.pbslearningmedia.org/resource/tdc02.sci.life.gen.breeding/classical-vs-transgenic-breeding/
Anticipatory Set	For what kind of characteristics have food crops been selectively bred?
	What are some examples of harmful effects of selective breeding?
Exploration	Artificially Selecting Dogs
Student Inquiry	Students learn how artificial selection can be used to develop new dog breeds with characteristics that make the dogs capable of
	performing a desirable task. Students begin by examining canine features and their functions. They are then given a scenario that
	describes the type of task they need a new breed of dog to perform. They then select two existing breeds they feel will most likely
	produce a successful new breed and determine the resulting offspring's characteristics. This lesson emphasizes variation,
	inheritance, selection, and time (number of generations) to help students develop a clear understanding of artificial selection and,
	ultimately, natural selection.
	http://www.ucmp.berkeley.edu/education/lessons/breeding_dogs/
	Students will conduct research to determine the similarities, differences, applications and potential impacts of genetic technologies.
	http://betteriesson.com/iesson/636020/genetic-technology
Explanation	In these lessons:
Concepts and Practices	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	LS4.B: Natural Selection
	In artificial selection, humans have the capacity to influence certain characteristics of organisms by selective breeding. One can
	choose desired parental traits determined by genes, which are then passed onto offspring.
Elaboration	Genetic Engineering Debate

Cliffside Park Public Schools

Extension Activity	Objective: To research the genetic engineering of food and create a public service announcement from the perspective of either
	the farmer or consumer.
	Questions for students to address:
	What type of technology is used in your type of genetic engineering?
	What are the benefits and risks of this type of technology?
	Who should be in charge of regulating and monitoring this type of genetic engineering to make sure that no one is abusing this
	technology?
	Research- positions must be based on facts
	Assessment Task A: Artificially Selecting Dogs- Written Response
	Following this activity, students will write a paragraph describing the process of artificial selection in their own words, using dogs or
	another organism as their example. Encourage students to use and underline the VIST terms (variation, inheritance, selection, time)
	in their explanation.
	Assessment Task B:
	<u>Clone Video Reflection</u>
Evaluation	Following the activity part of the Genetic Technology lesson, students should synthesize information learned by completing the
Assessment Tasks	reflection activity.
	Assessment Task C:
	Students will create an illustration that sums up their feelings/viewpoint on the genetic technologies they just learned about.
	Students can hand draw this or create it on the computer but either way it must be neat, colorful and their position (for or against)
	must be obvious. Students can then compare their wordle created in the warm-up to their illustration to see if their perspective has
	changed.
	Gather, read, and synthesize information from multiple appropriate sources and assess the credibility, accuracy, and possible bias of
	each publication and methods used, and describe how they are supported or not supported by evidence.

Cliffside Park Public Schools

LIFE SCIENCE					
MS-LS4-6 Biological Evol	MS-LS4-6 Biological Evolution: Unity and Diversity				
MS-LS4-6. Use mathema	atical representations t	o support explanations of how natural selection may lead to	increases and decreases of specific traits in		
populations over time.					
Clarification Statement:	Emphasis is on using m	athematical models, probability statements, and proportiona	l reasoning to support explanations of trends in		
changes to populations o	over time.				
Assessment Boundary: A	Assessment does not in	clude Hardy Weinberg calculations.			
Evidence Statements: M	<u>S-LS4-6</u>				
Science & Engine	eering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Using Mathematics and	Computational	LS4.C: Adaptation	Cause and Effect		
<u>Thinking</u>		Adaptation by natural selection acting over generations is	Phenomena may have more than one cause,		
Mathematical and comp	<u>utational thinking in</u>	one important process by which species change over time in	and some cause and effect relationships in		
<u>6–8 builds on K–5 experi</u>	ences and progresses	response to changes in environmental conditions. Traits that	systems can only be described using		
to identifying patterns in large data sets and		support successful survival and reproduction in the new	probability.		
using mathematical conc	cepts to support	environment become more common; those that do not			
explanations and argume	<u>ents.</u>	become less common. Thus, the distribution of traits in a			
Use mathematical repres	sentations to support	population changes.			
scientific conclusions and	d design solutions.				
Connections to other DC	Cls in this grade-band: I	MS.LS2.A ; MS.LS2.C ; MS.LS3.B ; MS.ESS1.C			
Articulation of DCIs acro	oss grade-bands: 3.LS4.	C ; HS.LS2.A ; HS.LS2.C ; HS.LS3.B ; HS.LS4.B ; HS.LS4.C			
NJSLS- ELA: N/A					
NJSLS- Math: MP.4, 6.RF	P.A.1, 6.SP.B.5, 7.RP.A.	2			
		5E Model			
MS-LS4-6. Use mathema	atical representations t	o support explanations of how natural selection may lead to	increases and decreases of specific traits in		
populations over time.					
Engage	Natural Selection Video				
Anticipatory Set	iticipatory Set http://www.hhmi.org/biointeractive/making-fittest-natural-selection-and-adaptation				
Exploration	Nature at Work Mice La	<u>b</u>			
Student Inquiry	https://d2ct263enury6r	.cloudfront.net/dQOQjAOu34mWuVJ625rTV9mYLbqflasfeqyE	PrQZten4WDa0h.pdf		

	If the events in the game occurred in nature, how would the group of mice change over time? How did the results for the white sand
	environment differ from those of the brown forest floor environment? Students should use their numerical data to explain how
	natural selection leads to increases or decreases of specific traits in populations over time.
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	LS4.C: Adaptation
	Adaptation by natural selection acting over generations is one important process by which species change over time in response to
	changes in environmental conditions. Traits that support successful survival and reproduction in the new environment become more
	common; those that do not become less common. Thus, the distribution of traits in a population changes.
Flaharation	Related Lessons
	http://betterlesson.com/next_gen_science/browse/2239/ngss-ms-ls4-6-use-mathematical-representations-to-support-explanations-
Extension Activity	of-how-natural-selection-may-lead-to-increases-and-decrea
	Assessment Task A: Lab Analysis Questions
	Assessment Task B: Lab Graph
Evaluation	Use mathematical representations to support scientific conclusions and design solutions.
Assessment Tasks	Student graphs should:
	- compare the population changes of mice in both environments across all three generations
	- include a title, labels and a key if necessary

Cliffside Park Public Schools

GRADE: 8

Unit 3: Overview

Unit 3: Stability and Change on Earth

Grade: 8

Content Area: Earth and Space Science

Pacing: 30 Instructional Days

Essential Question

Why aren't minerals and groundwater distributed evenly across the world?

Student Learning Objectives (Performance Expectations)

MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are

the result of past and current geoscience processes.

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Unit Summary

Students construct an understanding of the ways that human activities affect Earth's systems. Students use practices to understand the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts on the development of these resources. Students also understand that the distribution of these resources is uneven due to past and current geosciences processes or removal by humans. The crosscutting concepts of patterns, cause and effect, and stability and change are called out as organizing concepts for these disciplinary core ideas. In this unit of study students are expected to demonstrate proficiency in asking questions, analyzing and interpreting data, constructing explanations, and designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

non-renewable, petroleum,organic marine sediment, geological traps , metal ores, hydrothermal, subduction zones, geoscience process, natural hazards, catastrophic events, mass wasting, per-capita consumption, solar radiation, methane, carbon dioxide

Formative Assessment Measures

Part A: Why aren't minerals and groundwater distributed evenly across the world?

Students who understand the concepts are able to:

Cliffside Park Public Schools

GRADE: 8

Construct a scientific explanation based on valid and reliable evidence of how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geosciences processes.

Obtain evidence from sources, which must include the student's own experiments.

Construct a scientific explanation based on the assumption that theories and laws that describe the current geosciences process operates today as they did in the past and will continue to do so in the future.

Students who understand the concepts are able to:

Analyze and interpret data on natural hazards to determine similarities and differences and to distinguish between correlation and causation.

Part C: How might we treat resources if we thought about the Earth as a spaceship on an extended survey of the solar system?

Students who understand the concepts are able to:

Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon or a solution to a problem.

Interdisciplinary Connections				
N	JSLS- ELA	NJSLS- Ma	athematics	
Cite specific textual evidence to sup	port analysis of science and technical	Reason abstractly and quantitatively. (MS-ESS3-2) MP.2		
texts. (MS-ESS3-1),(MS-ESS3-2) RST	.6-8.1	Use variables to represent numbers and write expressions when solving a		
Integrate quantitative or technical i	nformation expressed in words in a text	real-world or mathematical problem; u	nderstand that a variable can represent	
with a version of that information expressed visually (e.g., in a flowchart,		an unknown number, or, depending on	the purpose at hand, any number in a	
diagram, model, graph, or table). (N	1S-ESS3-2) RST.6-8.7	specified set. (MS-ESS3-1),(MS-ESS3-2) 6.EE.B.6		
Write informative/explanatory texts	s to examine a topic and convey ideas,	a topic and convey ideas, Use variables to represent quantities in a real-world or mathematical problem,		
concepts, and information through the selection, organization, and analysis of and construct simple equations and inequalities to solve problems by re		qualities to solve problems by reasoning		
relevant content. (MS-ESS3-1) WHS	elevant content. (MS-ESS3-1) WHST.6-8.2 about the quantities. (MS-ESS3-1),(MS-ESS3-2) 7.EE.B.4		ESS3-2) 7.EE.B.4	
Draw evidence from informational texts to support analysis, reflection, and				
research. (MS-ESS3-1)WHST.6-8.9				
Core Instructional Materials	Can include: Textbooks Series, Lab Materials, etc.			
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12			
Technology Standards	8.1.8.A.5, 8.1.8.D.4, 8.1.8.E.1,8.1.8.F.1, 8.2.8.B.2.,8.2.8.B.3,8.2.8.B.4, 8.2.8.B.5, 8.2.8.B.7 8.2.8.D.1, 8.2.8.D.1, 8.2.8.D.6			
Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting	

Part B:

Cliffside Park Public Schools

GRADE: 8

Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

EARTH AND SPACE SCIENCE

MS-ESS3-1 Earth and Human Activity

MS-ESS3-1. Construct a scientific explanation based on evidence for how the uneven distributions of Earth's mineral, energy, and groundwater resources are the result of past and current geoscience processes.

Clarification Statement: Emphasis is on how these resources are limited and typically non-renewable, and how their distributions are significantly changing as a result of removal by humans. Examples of uneven distributions of resources as a result of past processes include but are not limited to petroleum (locations of the burial of organic marine sediments and subsequent geologic traps), metal ores (locations of past volcanic and hydrothermal activity associated with subduction zones), and soil (locations of active weathering and/or deposition of rock).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	ESS3.A: Natural Resources	Cause and Effect
Solutions	Humans depend on Earth's land, ocean, atmosphere,	Cause and effect relationships may be used to
Constructing explanations and designing	and biosphere for many different resources. Minerals,	predict phenomena in natural or designed
solutions in 6–8 builds on K–5 experiences	fresh water, and biosphere resources are limited, and	<u>systems.</u>
and progresses to include constructing	many are not renewable or replaceable over human	Connections to Engineering, Technology, and
explanations and designing solutions	lifetimes. These resources are distributed unevenly	Applications of Science
supported by multiple sources of evidence	around the planet as a result of past geologic processes	Influence of Science, Engineering, and
consistent with scientific ideas, principles,	around the planet as a result of past geologic processes.	Technology on Society and the Natural World
and theories.		

Cliffside Park Public Schools

Construct a scientific	c explanation based on		All human activity draws on natural resources
valid and reliable evidence obtained from			and has both short and long-term
sources (including the students' own			consequences, positive as well as negative, for
experiments) and th	e assumption that		the health of people and the natural
theories and laws th	at describe the natural		environment
world operate today	as they did in the nast		
and will continue to	do so in the future		
dia wir continue to	do so in the ratare.		
Connections to othe	er DCIs in this grade-band	: MS.PS1.A ; MS.PS1.B ; MS.ESS2.D	
Articulation of DCIs	across grade-bands: 4.PS	3.D ; 4.ESS3.A ; HS.PS3.B ; HS.LS1.C ; HS.ESS2.A ; HS.ESS2.B	3 ; HS.ESS2.C ; HS.ESS3.A
NJSLS- ELA: SL.8.5 R	ST.6-8.1, WHST.6-8.2, WH	IST.6-8.9	
NJSLS- Math: 6.EE.B	.6, 7.EE.B.4		
		5E Model	
MS-ESS3-1. Constru	ct a scientific explanation	based on evidence for how the uneven distributions of Ea	arth's mineral, energy, and groundwater
resources are the re	sult of past and current g	eoscience processes.	
	Video: Groundwater, Beneath the Surface		
	http://science.kged.org/quest/2014/03/26/groundwater-beneath-the-surface/		
	Pre-Discussion Questions		
	What is water called beneath the surface?		
	What are some dangers facing aquifers and groundwater?		
Engago	Post-Discussion Questions:		
Anticipatory Set	Why is groundwater so vital to us?		
Anticipatory Set	How does the water cycle operate?		
	Extension Activity		
	Name as many parts of the water cycle as you can and describe the function of each.		
	Possible activity: Draw a water cycle with as many parts as you can to show how they all interact, and then replay the animation to		
	check and fill in the rest. Compare groundwater to aquifers. How are they alike and how are they different? How are aquifers		
	replenished or depleted?		
	Students will work in pairs at computer stations on the "Energy in the U.S. Webquest". Students will learn about renewable and		
Exploration	nonrenewable energy sources and current and future consumption trends in the U.S. Students will need to utilize headphones		
Student Inquiry	during the video/audio sections of the Webquest in order to successfully complete it. When students complete the Webquest, the		
teacher will initiate a class discussion using the following discussion questions:			

	1. What agencies or organizations sponsored the Web sites you collected information from and what might their bias be?
	2. Do you think the information presented on the Web sites is balanced?
	3. What makes some energy sources renewable and others nonrenewable?
	4. What are the advantages of using renewable energy sources?
	5. Do you think the U.S. has an obligation to reduce its use of nonrenewable energy sources? Why?
	6. What future energy trends do you think are likely for the U.S.?
	For more explicit teacher instructions visit
	http://sfrc.ufl.edu/extension/ee/woodenergy/files/activities/WoodEnergy_activity1.pdf
	After completing this Webquest, ask students to create a poster using the information they collected about energy in the U.S. The overarching topic of the poster can be open to students. For example, it could focus on renewable energy, impacts of energy on the
	environment, trends in U.S. energy consumption, or a comparison of U.S. energy consumption to other countries. Students should
	use graphics or pictures. Encourage students to draw or use magazine clippings or photos and to be as creative as possible. Students
	should also cite evidence and resources from the web-quest in the poster text. Posters can be displayed around the classroom,
	In these lesses
	In these lessons
	Teachers Should. Introduce formal labers, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and	ESS3.A: Natural Resources
Practices	Humans depend on Earth's land, ocean, atmosphere, and biosphere for many different resources. Minerals, fresh water, and biosphere for many different resources. These resources are distributed
	biosphere resources are inflited, and many are not renewable of replaceable over numan metimes. These resources are distributed
	uneventy around the planet as a result of past geologic processes.
	Extension Activities:
	Better Lessons (MS-ESS3-1)
Elaboration Extension Activity	Measuring Energy in the Atmosphere: Exploring Climate Change
	What Are Fossil Fuels?
	Blame it on the Carbon
	Energy History
	Why is Coal So Important?
	Exploring Oil
	What are We Coming Home To?

Cliffside Park Public Schools

	Assessment Task A: Student Poster
	Construct a scientific explanation based on valid and reliable evidence obtained from sources (including the students' own
	experiments) and the assumption that theories and laws that describe the natural world operate today as they did in the past and
Evaluation	will continue to do so in the future.
Assessment Tasks	Following the WebQuest, students will use the information they gathered to create a poster. Student posters should include a
	scientific explanation which focuses on how the availability of nonrenewable energy resources has and continues to change.
	See Rubric on pg. 4
	http://sfrc.ufl.edu/extension/ee/woodenergy/files/activities/WoodEnergy_activity1.pdf

Cliffside Park Public Schools

GRADE: 8

EARTH AND SPACE SCIENCE

MS-ESS3-2 Earth and Human Activity

MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects.

Clarification Statement: Emphasis is on how some natural hazards, such as volcanic eruptions and severe weather, are preceded by phenomena that allow for reliable predictions, but others, such as earthquakes, occur suddenly and without notice, and thus are not yet predictable. Examples of natural hazards can be taken from interior processes (such as earthquakes and volcanic eruptions), surface processes (such as mass wasting and tsunamis), or severe weather events (such as hurricanes, tornadoes, and floods). Examples of data can include the locations, magnitudes, and frequencies of the natural hazards. Examples of technologies can be global (such as satellite systems to monitor hurricanes or forest fires) or local (such as building basements in tornado-prone regions or reservoirs to mitigate droughts).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings.	ESS3.B: Natural Hazards Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events.	PatternsGraphs, charts, and images can be used to identify patterns in data.Connections to Engineering, Technology, and Applications of ScienceInfluence of Science, Engineering, andTechnology on Society and the Natural WorldThe uses of technologies and any limitations on their use are driven by individual or societal needs, desires, and values; by the findings of scientific research; and by differences in such factors as climate, natural resources, and economic conditions. Thus technology use varies from region to region and over time.
Connections to other DCIs in this grade-band: MS.PS3.C		
Articulation of DCIs across grade-bands: 3.ESS3.B ; 4.ESS3.B ; HS.ESS2.B ; HS.ESS2.D ; HS.ESS3.B ; HS.ESS3.D		

NJSLS- ELA: RST.6-8.1, RST.6-8.7

BOE APPROVAL: August 2016

NJSLS- Math: MP.2, 6.EE.B.6, 7.EE.B.4 5E Model MS-ESS3-2. Analyze and interpret data on natural hazards to forecast future catastrophic events and inform the development of technologies to mitigate their effects. Have students view series of National Geographic Videos on Catastrophic Events (volcanoes, hurricanes, tsunamis, tornadoes, and earthquakes. Engage http://video.nationalgeographic.com/video/environment Anticipatory Set Lead classroom discussion on catastrophic events. Encourage students to share their previous understanding of and personal experiences with these events. Naturally Disastrous In this lesson, students are introduced to natural disasters and learn the difference between natural hazards and natural disasters. They discover the many types of natural hazards—avalanche, earthquake, flood, forest fire, hurricane, landslide, thunderstorm, tornado, tsunami and volcano—as well as specific examples of natural disasters. Students also explore why understanding these natural hazards is important to survival on our planet. https://www.teachengineering.org/view lesson.php?url=collection/cub /lessons/cub natdis/cub natdis lesson01.xml Exploration Student Inquiry Save Our City In this lesson, students learn about various natural hazards and specific methods engineers use to prevent these hazards from becoming natural disasters. They study a hypothetical map of an area covered with natural hazards and decide where to place natural disaster prevention devices by applying their critical thinking skills and an understanding of the causes of natural disasters. https://www.teachengineering.org/view activity.php?url=collection/cub /activities/cub natdis/cub natdis lesson01 activity1.xm In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Explanation Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Concepts and **ESS3.B:** Natural Hazards Practices Mapping the history of natural hazards in a region, combined with an understanding of related geologic forces can help forecast the locations and likelihoods of future events. Earthquake Hazards Elaboration http://betterlesson.com/lesson/629624/earthquake-hazards Extension Activity In this activity, students will identify major seismic hazards and evaluate the effectiveness of various safety measures.

Cliffside Park Public Schools

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

	Predicting Volcanic Eruptions: Exercise
Evaluation	Analyze and interpret data to determine similarities and differences in findings.
Assessment Tasks	Students will apply their understanding of interpreting natural hazard data to forecast future catastrophic events.

Cliffside Park Public Schools

GRADE: 8

EARTH AND SPACE SCIENCE

MS-ESS3-4 Earth and Human Activity

MS-ESS3-4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems.

Clarification Statement: Examples of evidence include grade-appropriate databases on human populations and the rates of consumption of food and natural resources (such as freshwater, mineral, and energy). Examples of impacts can include changes to the appearance, composition, and structure of Earth's systems as well as the rates at which they change. The consequences of increases in human populations and consumption of natural resources are described by science, but science does not make the decisions for the actions society takes.

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ESS3.C: Human Impacts on Earth Systems	Cause and Effect
Engaging in argument from evidence in	Typically as human populations and	Cause and effect relationships may be used to predict
6-8 builds on K-5 experiences and	per-capita consumption of natural	phenomena in natural or designed systems.
progresses to constructing a convincing	resources increase, so do the negative	Connections to Engineering, Technology, and Applications of
argument that supports or refutes	impacts on Earth unless the activities and	Science
claims for either explanations or	technologies involved are engineered	Influence of Science, Engineering, and Technology on Society
solutions about the natural and	<u>otherwise.</u>	and the Natural World
designed world(s).		All human activity draws on natural resources and has both
Construct an oral and written argument		short and long-term consequences, positive as well as negative,
supported by empirical evidence and		for the health of people and the natural environment.
scientific reasoning to support or refute		Connections to Nature of Science
an explanation or a model for a		Science Addresses Questions About the Natural and Material
phenomenon or a solution to a		World
<u>problem.</u>		Scientific knowledge can describe the consequences of actions
		but does not necessarily prescribe the decisions that society
		takes.
Connections to other DCIs in this grade-band: MS.LS2.A ; MS.LS4.D		
Articulation of DCIs across grade-bands: 3.LS2.C ; 3.LS4.D ; 5.ESS3.C ; HS.LS2.A ; HS.LS2.C ; HS.LS4.C ; HS.LS4.D ; HS.ESS2.E ; HS.ESS3.A ; HS.ESS3.C		
NJSLS- ELA: RST.6-8.1, WHST.6-8.1, WHST.6-8.9		
NJSLS- Math: 6.RP.A.1, 7.RP.A.2, 6.EE.B.6, 7.EE.B.4		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

M5:E53:4. Construct an argument supported by evidence for how increases in human population and per-capita consumption of natural resources impact Earth's systems. Engage Anticipatory Set Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources : Z Billion: How Did Wc Get So Big So Fast2 http://www.tnp.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up More Than What Is Available2 http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Why Do We Build Dams2 in this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, fload control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thirsty County. https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_dams_lesson01.xml Exploration Student Inquiry How Much Water Do You USe2 In this activity, students will keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. Students will then relate their own water usages to the average residents of imaginary Thirsty/County, and calculate the necessary water capacity of a dam that would provide residential water to the community. https://www.teachengineering.org/view_altivity.ph?QH=collection/cub_dams_lesson1_attivity_ax Following these activitites, students will be asked to synthesize their unders	5E Model		
impact Earth's systems. Engage Anticipatory Set Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources : Z Billion: How Did We Get So Big So Fast? http://www.npr.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up. More Than What Is Available? http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://study.com/academy/lesson/sustainable-development-within-environmental-limits.html Why Do We Build Dams? In this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thisty County. https://www.teachengineering.org/view_lesson.php?url=collection/cub /lessons/cub_dams/cub	MS-ESS3-4. Construct a	in argument supported by evidence for how increases in human population and per-capita consumption of natural resources	
Engage Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources : ZBillion: How Did We Get So Big So Fast2 http://www.npr.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up More Than What Is Available? http://www.npr.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up More Than What Is Available? http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://www.teavorldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://www.teavorldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://www.teavorldcounts.com/stories/consequences_of_depletion_of_natural_resources In this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which students will be assen to phy?url=collection/cub_/lesson/cub_dams/cub_dams/cub_dams/cub_dams/cub_dams/cu	impact Earth's systems	<u>.</u>	
Why Do We Build Dams?In this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thirsty County. https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_dams/cub_dams_lesson01.xmlExplorationHow Much Water Do You Use? In this activity, students will keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. Students will then relate their own water usages to the average residents of imaginary Thirsty County, and calculate the necessary water capacity of a dam that would provide residential water to the community. https://www.teachengineering.org/view_activity.ph?url=collection/cub_/activities/cub_dams_lesson1_activity1.x Following these activities, students will be asked to synthesize their understanding of this concept by constructing an argument that explains the connection between human population and the availability of natural resources. Students should refer to concrete examples from these activities in order to support their argument with evidence.Explanation Concepts and PracticesIn these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS3.C: Human Impacts on Earth Systems Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise. <t< th=""><th>Engage Anticipatory Set</th><th>Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources : 7 Billion: How Did We Get So Big So Fast? http://www.npr.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up More Than What Is Available? http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://study.com/academy/lesson/sustainable-development-within-environmental-limits.html</th></t<>	Engage Anticipatory Set	Have students view the following videos then lead a class discussion on the rate of human population growth and the effect this is having on natural resources : 7 Billion: How Did We Get So Big So Fast? http://www.npr.org/2011/10/31/141816460/visualizing-how-a-population-grows-to-7-billion Are We Using Up More Than What Is Available? http://www.theworldcounts.com/stories/consequences_of_depletion_of_natural_resources Video: Sustainable Development within Environmental Limits http://study.com/academy/lesson/sustainable-development-within-environmental-limits.html	
Explanation Concepts and PracticesIn these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. ESS3.C: Human Impacts on Earth Systems Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.ElaborationRelated Activities	Exploration Student Inquiry	Why Do We Build Dams? In this activity, students will be introduced to the concept of a dam and its potential benefits, which include water supply, electricity generation, flood control, recreation and irrigation. This lesson begins an ongoing classroom scenario in which student engineering teams working for the Splash Engineering firm design dams for a fictitious client, Thirsty County. https://www.teachengineering.org/view_lesson.php?url=collection/cub_/lessons/cub_dams/cub_dams_lesson01.xml How Much Water Do You Use? In this activity, students will keep track of their own water usage for one week, gaining an understanding of how much water is used for various everyday activities. Students will then relate their own water usages to the average residents of imaginary Thirsty County, and calculate the necessary water capacity of a dam that would provide residential water to the community. https://www.teachengineering.org/view_activity.php?url=collection/cub_/activities/cub_dams/cub_dams_lesson01_activity1.x Following these activities, students will be asked to synthesize their understanding of this concept by constructing an argument that explains the connection between human population and the availability of natural resources. Students should refer to concrete examples from these activities in order to support their argument with evidence.	
Elaboration Related Activities	Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. <u>ESS3.C: Human Impacts on Earth Systems</u> <u>Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earth unless the activities and technologies involved are engineered otherwise.</u>	
	Elaboration	Related Activities	

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

Extension Activity	Earth Science Week: MS-ESS3-4
	http://www.earthsciweek.org/ngss-performance-expectations/ms-ess3-4
	Assessment Task A: Why Do We Build Dams? Proposal
	Construct an oral and written argument supported by empirical evidence and scientific reasoning to support or refute an
	explanation or a model for a phenomenon or a solution to a problem.
Evaluation	After you have introduced the hypothetical Thirsty County scenario, divide the class into engineering teams of 2-3 students each,
Evaluation	and ask each team to write a short proposal response to the municipality of Thirsty County to address the resident's' needs.
ASSESSMENT TASKS	Proposals should comment on the needs of the residents, some possible solutions (at least a Plan A and Plan B), and
	benefits/problems associated with each plan proposed. For example, students may write a statement that says their team will
	"address the resident's' needs by designing a dam that provides people with water during summer droughts, protects buildings
	from flash floods and storms, and produces hydropower as a clean energy alternative to coal-fired power plants.

EARTH AND SPACE SCIENCE

MS-ESS3-5 Earth and Human Activity

MS-ESS3-5. Ask questions to clarify evidence of the factors that have caused the rise in global temperatures over the past century.

Clarification Statement: Examples of factors include human activities (such as fossil fuel combustion, cement production, and agricultural activity) and natural processes (such as changes in incoming solar radiation or volcanic activity). Examples of evidence can include tables, graphs, and maps of global and regional temperatures, atmospheric levels of gases such as carbon dioxide and methane, and the rates of human activities. Emphasis is on the major role that human activities play in causing the rise in global temperatures.

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Asking Questions and Defining Problems	ESS3.D: Global Climate Change	Stability and Change
Asking questions and defining problems	Human activities, such as the release of greenhouse gases from	Stability might be disturbed either by
<u>in grades 6–8 builds on grades K–5</u>	burning fossil fuels, are major factors in the current rise in Earth's	sudden events or gradual changes
experiences and progresses to specifying	mean surface temperature (global warming). Reducing the level of	that accumulate over time.
relationships between variables, and	climate change and reducing human vulnerability to whatever	
clarifying arguments and models.	climate changes do occur depend on the understanding of climate	
Ask questions to identify and clarify	science, engineering capabilities, and other kinds of knowledge, such	
evidence of an argument.	as understanding of human behavior and on applying that knowledge	
	wisely in decisions and activities.	

BOE APPROVAL: August 2016

Connections to other DCIs in this grade-band: MS.PS3.A		
Articulation of DCIs across	s grade-bands: HS.PS3.B ; HS.PS4.B ; HS.ESS2.A ; HS.ESS2.D ; HS.ESS3.C ; HS.ESS3.D	
NJSLS- ELA: RST.6-8.1		
NJSLS- Math: MP.2, 6.EE.E	B.6, 7.EE.B.4	
	5E Model	
MS-ESS3-5. Ask questions	to clarify evidence of the factors that have caused the rise in global temperatures over the past century.	
	Show the trailer for the movie "Chasing Ice". Have students work in small groups or pairs to try and identify themes or ideas conveyed by the trailer. <u>https://chasingice.com/</u>	
Engage Anticipatory Set	Have students read the online National Geographic article "The Big Thaw". The article explores the issues around global warming and melting glaciers. View and discuss each photo from the photo gallery. http://ngm.nationalgeographic.com/2007/06/big-thaw/big-thaw-text	
	Show students a graph of the increase in average temperature on Earth over the last few years. Have students examine the graph and make hypotheses about why the temperature has increased. http://climate.nasa.gov/vital-signs/global-temperature/	
Exploration Student Inquiry	Activity 1: Exploring Global Climate Change Have students view the video Global Warming 101. After viewing the video, lead a brief discussion about the facts presented. http://video.nationalgeographic.com/video/101-videos/global-warming-101. Allow students to view the National Geographic site on Global Warming http://environment.nationalgeographic.com/environment/global-warming/ Next, student will explore NASA's climate change website: On this site, students can view facts, explore interactive features, view videos, read articles related to climate change, providing them with a basis of understanding on this topic. http://climate.nasa.gov/. After exploring the site, direct students to NASA's whiteboard animation series. Guide students in viewing and discussion several of these video animations. Following each video, lead students in a discussion to assess their thoughts and reactions. http://climate.nasa.gov/climate_resource_center/earthminute Climate Hot Map http://www.climatehotmap.org/index.html Activity 2: Viewpoints on Global Warming	

	To expose students to opposing viewpoints on global warming, have students read the article: Is Global Warming Real? This article presents the five top arguments both for and against global warming.
	After reading this article, have students complete the Venn-Diagram to answer the question: Has human activity caused the world's climate to change over the past 100 years? Have students discuss their completed diagrams. What were some of the similarities and differences among the completed Venn-Diagrams? <u>http://www-tc.pbs.org/now/classroom/globalvenn.pdf</u>
	Activity 3: Making Predictions About the Effects of Global Warming With a basic understanding of the global climate change, students can now make predictions about the potential impact of global warming. Ask students to hypothesize about how the world's climate could change over the next 100 years if humans do not take action. Have students make predictions about the effects such climate changes could have on humans. Have students explore NASA proposed solutions to climate change, specifically proposed energy innovations. In groups, have students visit the following website and select one of the innovations. Students should read the article on their chosen innovation and gather key facts. Have students share these facts through brief group presentations. <u>http://climate.nasa.gov/solutions/energy_innovations/</u>
Explanation Concepts and Practices	In these lessonsTeachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.ESS3.D: Global Climate ChangeHuman activities, such as the release of greenhouse gases from burning fossil fuels, are major factors in the current rise inEarth's mean surface temperature (global warming). Reducing the level of climate change and reducing human vulnerabilityto whatever climate changes do occur depend on the understanding of climate science, engineering capabilities, and otherkinds of knowledge, such as understanding of human behavior and on applying that knowledge wisely in decisions andactivities.
Elaboration Extension Activity	Global Warming Project (PBS) http://www-tc.pbs.org/now/classroom/globalproject.pdf
Evaluation Assessment Tasks	Assessment Task A: Question Debate Ask questions to identify and clarify evidence of an argument. Following Activity 2- Viewpoints on Global Warming, students will be asked to pick a position on the topic of global warming. Using the evidence they gathered for both positions on their Venn-Diagram, the students will then be asked to construct a series of questions that could be used in a class debate on the topic. The questions that the students formulate should be

BOE APPROVAL: August 2016

Cliffside Park Public Schools

directed to those who identify with the opposing view. Students will be assessed on the quality of the questions they develop
and their overall participation in the debate.

Cliffside Park Public Schools

GRADE: 8

Unit 4: Overview **Unit 4: Human Impacts** Grade: 8 Content Area: Earth and Space Science Pacing: 25 Instructional Day **Essential Questions** How do we monitor the health of the environment (our life support system)? Is it possible to predict and protect ourselves from natural hazards? **Student Learning Objectives (Performance Expectations)** MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment. MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant scientific principles and potential impacts on people and the natural environment that may limit possible solutions. MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that can be combined into a new solution to better meet the criteria for success. Unit Summarv In this unit of study, students analyze and interpret data and design solutions to build on their understanding of the ways that human activities affect Earth's systems. The emphasis of this unit is the significant and complex issues surrounding human uses of land, energy, mineral, and water resources and the resulting impacts of these uses. The crosscutting concepts of cause and effect and the influence of science, engineering, and technology on society and the natural world are called out as organizing concepts for these disciplinary core ideas. Building on Unit 3, students define a problem by precisely specifying criteria and constraints for solutions as well as potential impacts on society and the natural environment; systematically evaluate alternative solutions; analyze data from tests of different solutions; combining the best ideas into an improved solution; and develop and iteratively test and improve their model to reach an optimal solution. In this unit of study students are expected to demonstrate proficiency inanalyzing and interpreting dataand designing solutions. Students are also expected to use these practices to demonstrate understanding of the core ideas. **Technical Terms** Aquifers, levee, urban development, pollution, anthropogenic, particulates, ecological community

Formative Assessment Measures

Part A: How do we monitor the health of the environment (our life support system)?

Students who understand the concepts are able to:

Apply scientific principles to dea	sign a method for monitoring and minimizir	ng a human impact on the environment.
	Interdiscip	linary Connections
	NJSLS- ELA	NJSLS- Mathematics
Cite specific textual evidence to	support analysis of science and technical	Use variables to represent numbers and write expressions when solving a
texts. (MS-ETS1-1),(MS-ETS1-2)	,(MS-ETS1-3) RST.6-8.1	real-world or mathematical problem; understand that a variable can represent an
Integrate quantitative or techni	cal information expressed in words in a	unknown number, or, depending on the purpose at hand, any number in a
text with a version of that infor	mation expressed visually (e.g., in a	specified set. (MS-ESS3-3) 6.EE.B.6
flowchart, diagram, model, grap	ph, or table). (MS-ESS3-3),(MS-ETS1-3)	Use variables to represent quantities in a real-world or mathematical problem,
RST.6-8.7		and construct simple equations and inequalities to solve problems by reasoning
Compare and contrast the infor	mation gained from experiments,	about the quantities. (MS-ESS3-3) 7.EE.B.4
simulations, videos, or multime	dia sources with that gained from reading	Understand the concept of a ratio and use ratio language to describe a ratio
a text on the same topic. (MS-E	TS1-2),(MS-ETS1-3) RST.6-8.9	relationship between two quantities. (MS-ESS3-3) 6.RP.A.1
Conduct short research projects	s to answer a question (including a	Recognize and represent proportional relationships between quantities.
self-generated question), drawi	ng on several sources and generating	(MS-ESS3-3) 7.RP.A.2
additional related, focused que	stions that allow for multiple avenues of	Reason abstractly and quantitatively. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) MP.2
exploration. (MS-ETS1-2) WHST	.6-8.7	Solve multi-step real-life and mathematical problems posed with positive and
Gather relevant information fro	m multiple print and digital sources, using	negative rational numbers in any form (whole numbers, fractions, and decimals),
search terms effectively; assess	the credibility and accuracy of each	using tools strategically. Apply properties of operations to calculate with numbers
source; and quote or paraphras	e the data and conclusions of others while	in any form; convert between forms as appropriate; and assess the
avoiding plagiarism and following	ng a standard format for citation.	reasonableness of answers using mental computation and estimation strategies.
(MS-ESS3-3),(MS-ETS1-1) WHST	.6-8.8	(MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) 7.EE.3
Draw evidence from informatio	nal texts to support analysis, reflection,	
and research. (MS-ETS1-2) WHST.6-8.9		
Integrate multimedia and visual displays into presentations to clarify		
information, strengthen claims and evidence, and add interest.		
(MS-ETS1-4) SL.8.5		
Core Instructional Materials	Can include: Textbooks Series, Lab Materia	als, etc.
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP	11,CRP12
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.	1.8.A.5, 8.1.8.D.4, 8.1.8.E.1, 8.1.8.F.1, 8.2.8.A.4,8.2.8.A.5, 8.2.8.B.2, 8.2.8.B.2,
	8.2.8.D.1,8.2.8.D.3	

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual	Multimedia	Graphic organizers	Tiered activities
dictionaries/translation	Leveled readers	Extended time	Independent research/inquiry
Think alouds	Assistive technology	Parent communication	Collaborative teamwork
Read alouds	Notes/summaries	Modified assignments	Higher level questioning
Highlight key vocabulary	Extended time	Counseling	Critical/Analytical thinking tasks
Annotation guides	Answer masking		Self-directed activities
Think-pair- share	Answer eliminator		
Visual aides	Highlighter		
Modeling	Color contrast		
Cognates			

Cliffside Park Public Schools

GRADE: 8

EARTH AND SPACE SCIENCE

MS-ESS3-3 Earth and Human Activity

MS-ESS3-3. Apply scientific principles to design a method for monitoring and minimizing a human impact on the environment.

Clarification Statement: Examples of the design process include examining human environmental impacts, assessing the kinds of solutions that are feasible, and designing and evaluating solutions that could reduce that impact. Examples of human impacts can include water usage (such as the withdrawal of water from streams and aquifers or the construction of dams and levees), land usage (such as urban development, agriculture, or the removal of wetlands), and pollution (such as of the air, water, or land).

Assessment Boundary: N/A

Evidence Statements: MS-ESS3-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	ESS3.C: Human Impacts on Earth Systems	Cause and Effect
Solutions	Human activities have significantly altered the	Relationships can be classified as causal or
Constructing explanations and designing	biosphere, sometimes damaging or destroying natural	correlational, and correlation does not
solutions in 6–8 builds on K–5 experiences	habitats and causing the extinction of other species.	necessarily imply causation.
and progresses to include constructing	But changes to Earth's environments can have different	Connections to Engineering, Technology, and
explanations and designing solutions	impacts (negative and positive) for different living	Applications of Science
supported by multiple sources of evidence	things.	Influence of Science, Engineering, and
consistent with scientific ideas, principles, and	Typically as human populations and per-capita	Technology on Society and the Natural World
theories.	consumption of natural resources increase, so do the	The uses of technologies and any limitations
Apply scientific principles to design an object,	negative impacts on Earth unless the activities and	on their use are driven by individual or societal
tool, process or system.	technologies involved are engineered otherwise.	needs, desires, and values; by the findings of
		scientific research; and by differences in such
		factors as climate, natural resources, and
		economic conditions. Thus technology use
		varies from region to region and over time.

Connections to other DCIs in this grade-band: MS.LS2.A ; MS.LS2.C , MS.LS4.D

Articulation of DCIs across grade-bands: 3.LS2.C; 3.LS4.D; 5.ESS3.C; HS.LS2.C; HS.LS4.C; HS.LS4.D; HS.ESS2.C; HS.ESS2.D; HS.ESS2.E; HS.ESS3.C; HS.ESS3.D

NJSLS- ELA: WHST.6-8.7, WHST.6-8.8

NJSLS- Math: 6.RP.A.1, 7.RP.A.2, 6.EE.B.6, 7.EE.B.4

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

	5E Model
MS-ESS3-3. Apply scienti	fic principles to design a method for monitoring and minimizing a human impact on the environment.
Engage	Have students view the following video and online quiz
Anticipatory Set	Human Impact on the Environment:
	http://study.com/academy/lesson/human-impacts-on-the-environment.html
Exploration Student Inquiry	Will the Air Be Clean Enough to Breath? This online interactive is comprised of five modules. In completing these activities, students will explore real-time air quality data with maps from the United States EPA. They will run experiments with computational models to investigate how pollutants flow in the atmosphere and look at how factors such as wind, sun, rain, geography and pollution affect air quality. By the end of the module, students will be able to predict the effect of human development on a region's future air quality. http://concord.org/stem-resources/will-air-be-clean-enough-breathe Design Your Society In this activity, students will use all they have learned about the potential impacts of climate change to create a 3D model of a self-sustaining, resilient society. http://betterlesson.com/lesson/644797/design-your-society
Explanation Concepts and Practices	In these lessonsTeachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.ESS3.C: Human Impacts on Earth SystemsHuman activities have significantly altered the biosphere, sometimes damaging or destroying natural habitats and causing theextinction of other species. But changes to Earth's environments can have different impacts (negative and positive) for differentliving things.Typically as human populations and per-capita consumption of natural resources increase, so do the negative impacts on Earthunless the activities and technologies involved are engineered otherwise.
Elaboration Extension Activity	Mix and Math Ecology: Human Impact Challenge students to think of a way to reduce the threat to the natural resource of their mix-and-match combinations without eliminating the human action. http://www.learnnc.org/lp/media/uploads/2008/12/ecologyworksheet.pdf In what ways could the human action be changed to achieve the same result but with better environmental consequences? Could any buffers or protection be placed on the ecological communities that might better preserve the natural resource?

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

	What policies or laws could be passed that might help?		
	Assessment Task A: Design Your Society using Google Sketch Up		
	Apply scientific principles to design an object, tool, process or system.		
	Using what students have learned about the potential impacts of climate change, students will create a 3D model of a		
Evaluation	self-sustaining, resilient society (using Google Sketch Up).		
Assessment Tasks			
	Assessment Task B: Society Presentations		
	Students will present 3D models to the class. Students viewing the presentations will use the Society Presentation Notes Guide		
	to synthesize and interpret information learned from presentations.		

	ENGINEERING DESIGN		
MS-ETS1-1 Engineering Design			
MS-ETS1-1. Define the criteria and constraints of a	a design problem with sufficient precision to ens	ure a successful solution, taking into account relevant	
scientific principles and potential impacts on peop	ole and the natural environment that may limit p	oossible solutions.	
Evidence Statements: MS-ETS1-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering	Influence of Science, Engineering, and Technology on	
Asking questions and defining problems in grades	Problems	Society and the Natural World	
6–8 builds on grades K–5 experiences and	The more precisely a design task's criteria and	All human activity draws on natural resources and has	
progresses to specifying relationships between	constraints can be defined, the more likely it is	both short and long-term consequences, positive as well	
variables, and clarifying arguments and models.	that the designed solution will be successful.	as negative, for the health of people and the natural	
Define a design problem that can be solved	Specification of constraints includes	environment. The uses of technologies and limitations on	
through the development of an object, tool,	consideration of scientific principles and other	their use are driven by individual or societal needs,	
process or system and includes multiple criteria	<u>relevant knowledge that are likely to limit</u>	desires, and values; by the findings of scientific research;	
and constraints, including scientific knowledge	possible solutions.	and by differences in such factors as climate, natural	
that may limit possible solutions.		resources, and economic conditions.	
Connections to MS-ETS1.A: Defining and Delimitin	g Engineering Problems include: Physical Scienc	e: MS-PS3-3	
Articulation of DCIs across grade-bands: 3-5.ETS1.	A ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B		
NJSLS- ELA: RST.6-8.1, WHST.6-8.8			
NJSLS- Math: MP.2, 7.EE.3			

Cliffside Park Public Schools

Cliffside Park Public Schools

GRADE: 8

ENGINEERING DESIGN

MS-ETS1-2 Engineering Design

MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem. Evidence Statements: MS-ETS1-2

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions	
Engaging in argument from evidence in 6–8 builds on K–5	There are systematic processes for evaluating solutions	
experiences and progresses to constructing a convincing	with respect to how well they meet the criteria and	
argument that supports or refutes claims for either	constraints of a problem.	
explanations or solutions about the natural and designed		
world.		
Evaluate competing design solutions based on jointly		
developed and agreed-upon design criteria.		
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5		
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.I	B ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B	
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7 , WHST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

Cliffside Park Public Schools

	ENGINEERING DESIGN	
MS-ETS1-3 Engineering Design		
MS-ETS1-3. Analyze data from tests to determine	similarities and differences among several design solutions to i	dentify the best characteristics of each
Evidence Statements: MS_ETS1_2	er meet the criteria for success.	
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data Analyzing data in 6–8 builds on K–5 experiences and progresses to extending quantitative analysis to investigations, distinguishing between correlation and causation, and basic statistical techniques of data and error analysis. Analyze and interpret data to determine similarities and differences in findings.	ETS1.B: Developing Possible Solutions There are systematic processes for evaluating solutions with respect to how well they meet the criteria and constraints of a problem. Sometimes parts of different solutions can be combined to create a solution that is better than any of its predecessors. ETS1.C: Optimizing the Design Solution Although one design may not perform the best across all tests, identifying the characteristics of the design that performed the best in each test can provide useful information for the redesign process—that is, some of those characteristics may be incorporated into the new design.	
Connections to MS-ETS1.B: Developing Possible Section 2015	olutions Problems include: Physical Science: MS-PS1-6, MS-PS3	-3, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the Design	Solution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.ETS1.	A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

Cliffside Park Public Schools

GRADE: 8

Unit 5: Overview **Unit 5: Relationships Among Forms of Energy** Grade: 8 **Content Area: Physical Science** Pacing: 20 Instructional Days **Essential Question** How can physics explain sports? Student Learning Objectives (Performance Expectations) MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system. MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the obiect. **Unit Summary** In this unit, students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence to make sense of relationship between energy and forces. Students develop their understanding of important qualitative ideas about the conservation of energy. Students understand that objects that are moving have kinetic energy and that objects may also contain stored (potential) energy, depending on their relative positions. Students also understand the difference between energy and temperature, and the relationship between forces and energy. The crosscutting concepts of scale, proportion, and quantity, systems and system models, and energy and matter are called out as organizing concepts for these disciplinary core ideas. Students use the practices of analyzing and interpreting data, developing and using models, and engaging in argument from evidence. Students are also expected to use these practices to demonstrate understanding of the core ideas. **Technical Terms** Kinetic energy, potential energy, electric interactions, magnetic interaction, gravitational interactions, empirical evidence **Formative Assessment Measures** Part A: Is it better to have an aluminum (baseball/softball) bat or a wooden bat? Students who understand the concepts are able to: Construct and interpret graphical displays of data to identify linear and nonlinear relationships of kinetic energy to the mass of an object and to the speed of

an object.

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

Part B: What would give you a better chance of winning a bowling match, using a basketball that you can roll really fast, or a bowling ball that you can only roll slowly?

Students who understand the concepts are able to:

Develop a model to describe what happens to the amount of potential energy stored in the system when the arrangement of objects interacting at a distance changes

Use models to represent systems and their interactions, such as inputs, processes, and outputs, and energy and matter flows within systems. Models could include representations, diagrams, pictures, and written descriptions.

Part C: Who can design the best roller coaster?

Students who understand the concepts are able to:

Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Conduct an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of an object. Do not include calculations of energy.

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively. (MS-PS3-1),(MS-PS3-5) MP.2	
technical texts, attending to the precise details of explanations or	Understand the concept of ratio and use ratio language to describe a ratio relationship	
descriptions. (MS-PS3-1),(MS-PS3-5) RST.6-8.1	between two quantities. (MS-PS3-1),(MS-PS3-5) 6.RP.A.1	
Integrate quantitative or technical information expressed in words	Understand the concept of a unit rate a/b associated with a ratio a:b with b \neq 0, and	
in a text with a version of that information expressed visually (e.g.,	use rate language in the context of a ratio relationship. (MS-PS3-1) 6.RP.A.2	
in a flowchart, diagram, model, graph, or table). (MS-PS3-1)	Recognize and represent proportional relationships between quantities.	
RST.6-8.7	(MS-PS3-1),(MS-PS3-5) 7.RP.A.2	
Write arguments focused on discipline content. (MS-PS3-5)	Know and apply the properties of integer exponents to generate equivalent numerical	
WHST.6-8.1	expressions. (MS-PS3-1) 8.EE.A.1	
Conduct short research projects to answer a question (including a	Use square root and cube root symbols to represent solutions to equations of the form	
self-generated question), drawing on several sources and	$x^2 = p$ and $x^3 = p$, where p is a positive rational number. Evaluate square roots of small	
generating additional related, focused questions that allow for	perfect squares and cube roots of small perfect cubes. Know that $\sqrt{2}$ is irrational.	
multiple avenues of exploration. (MS-PS3-3) WHST.6-8.7	(MS-PS3-1) 8.EE.A.2	
	Interpret the equation $y = mx + b$ as defining a linear function, whose graph is a straight	
	line; give examples of functions that are not linear. (MS-PS3-1),(MS-PS3-5) 8.F.A.3	

Cliffside Park Public Schools

GRADE: 8

BOE APPROVAL: August 2016

Integrate multimedia and visual di	splays into presentations to		
clarify information, strengthen claims and evidence, and add			
interest. (MS-PS3-2) SL.8.5			
Core Instructional Materials	Can include: Textbooks Series, La	ab Materials, etc.	
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7,	CRP8 ,CRP11,CRP12	
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.	1.8.A.4, 8.1.8.A.5, 8.1.8.D.4	
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

GRADE: 8

PHYSICAL SCIENCE MS. Energy MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. Clarification Statement: Emphasis is on descriptive relationships between kinetic energy and mass separately from kinetic energy and speed. Examples could include riding a bicycle at different speeds, rolling different sizes of rocks downhill, and getting hit by a wiffle ball versus a tennis ball. Assessment Boundary: N/A Evidence Statements: MS-PS3-1 **Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts** Analyzing and Interpreting Data PS3.A: Definitions of Energy Scale, Proportion, and Quantity Analyzing data in 6–8 builds on K–5 and progresses to Motion energy is properly called kinetic energy; it Proportional relationships (e.g. speed as the ratio is proportional to the mass of the moving object extending quantitative analysis to investigations, of distance traveled to time taken) among distinguishing between correlation and causation, and and grows with the square of its speed. different types of quantities provide information basic statistical techniques of data and error analysis. about the magnitude of properties and Construct and interpret graphical displays of data to processes. identify linear and nonlinear relationships. Connections to other DCIs in this grade-band: MS.PS2.A Articulation of DCIs across grade-bands: 4.PS3.B ; HS.PS3.A ; HS.PS3.B NJSLS- ELA: RST.6-8.1, RST.6-8.7 NJSLS- Math: MP.2, 6.RP.A.2, 7.RP.A.2, 8.EE.A.1, 8.EE.A.2, 8.F.A.3 **5E MODEL** MS.PS3-1. Construct and interpret graphical displays of data to describe the relationships of kinetic energy to the mass of an object and to the speed of an object. Using the following resource, students will view videos, read articles and engage in interactive simulation s related to kinetic Engage energy. Anticipatory Set http://www.ck12.org/ngss/middle-school-physical-sciences/energy Kinetic and Potential Energy Lab Rotation Exploration

	In these lab activities, students will determine the relationship among the energy transferred, the type of matter, the mass and
Student Inquiry	the change in the average kinetic energy of the particles. Students will construct and interpret graphical displays on their data dn
	construct, use, and present arguments to support a claim.
	http://betterlesson.com/lesson/640019/exploring-the-relationship-between-potential-kinetic-energy
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Evaluation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS3.A: Definitions of Energy
	Motion energy is properly called kinetic energy; it is proportional to the mass of the moving object and grows with the square of
	its speed.
Flaharation	Rubber Band Cannon Lab
	Students use rubber band cannons to explore potential and kinetic energy transfer!
Extension Activity	http://betterlesson.com/lesson/633996/rubber-band-cannon-lab
	Assessment Task A
Evaluation	Construct and interpret graphical displays of data to identify linear and nonlinear relationships.
Assessment Tasks	Students will construct and interpret graphical displays on their data and construct, use, and present arguments to support a
	claim. Complete Energy Skate Park Exploration Potential and Kinetic Energy activity guide.

Cliffside Park Public Schools

GRADE: 8

PHYSICAL SCIENCE

MS. Energy

MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy are stored in the system.

Clarification Statement: Emphasis is on relative amounts of potential energy, not on calculations of potential energy. Examples of objects within systems interacting at varying distances could include: the Earth and either a roller coaster cart at varying positions on a hill or objects at varying heights on shelves, changing the direction/orientation of a magnet, and a balloon with static electrical charge being brought closer to a classmate's hair. Examples of models could include representations, diagrams, pictures, and written descriptions of systems.

Assessment Boundary: Assessment is limited to two objects and electric, magnetic, and gravitational interactions.

Evidence Statements: MS-PS3-2

Science & Engine	ering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Developing and Using N	<u>lodels</u>	PS3.A: Definitions of Energy	Systems and System Models		
Modeling in 6–8 builds c	on K–5 and	A system of objects may also contain stored (potential)	Models can be used to represent systems and their		
progresses to developing	g, using and revising	energy, depending on their relative positions.	interactions – such as inputs, processes, and		
models to describe, test	, and predict more	PS3.C: Relationship Between Energy and Forces	outputs – and energy and matter flows within		
abstract phenomena and	d design systems.	When two objects interact, each one exerts a force on the	<u>systems.</u>		
Develop a model to desc	<u>cribe unobservable</u>	other that can cause energy to be transferred to or from			
<u>mechanisms.</u>		<u>the object.</u>			
Connections to other D	CIs in this grade-band	l: N/A			
Articulation of DCIs acro	oss grade-bands: HS.	PS2.B ; HS.PS3.B ; HS.PS3.C			
NJSLS- ELA: SL.8.5					
NJSLS- Math: N/A					
		5E MODEL			
MS-PS3-2. Develop a model to describe that when the arrangement of objects interacting at a distance changes, different amounts of potential energy					
are stored in the system.					
F	Roller Coast Science	Video			
Engage	http://www.discove	ttp://www.discovery.com/tv-shows/other-shows/videos/time-warp-roller-coaster-science/			
Anticipatory Set	Roller Coaster: Engir	er: Engineering and Construction			

Cliffside Park Public Schools

	http://www.sciencechannel.com/video-topics/engineering-construction/machines-rollercoaster/
	Building Roller Coasters
Evaluation	Students will work in pairs/groups to create a physical roller coaster. Refer to the following website for detailed instructions and
Exploration Student Inquin(student worksheets.
Student inquiry	https://www.teachengineering.org/view_activity.php?url=collection/duk_/activities/duk_rollercoaster_music_act/duk_rollercoaste
	r_music_act.xml
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Explanation	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Concepts and Practices	PS3.A: Definitions of Energy
	A system of objects may also contain stored (potential) energy, depending on their relative positions.
	PS3.C: Relationship Between Energy and Forces
	When two objects interact, each one exerts a force on the other that can cause energy to be transferred to or from the object.
Elaboration	Hold discussion on why some roller coasters failed, show videos of X-games events involving energy transformations and motion.
	Students will be encouraged to participate in discussion about what they viewed and why certain X-games athletes were successful
EXTENSION ACTIVITY	in certain tricks while others failed.
Evaluation	Assessment Task A
Accossmont Tasks	Develop a model to describe unobservable mechanisms.
ASSESSITIETIL TASKS	Students will complete Roller Coaster worksheet.

Cliffside Park Public Schools

GRADE: 8

PHYSICAL SCIENCE

MS. Energy

MS-PS3-5. Construct, use, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from the object.

Clarification Statement: Examples of empirical evidence used in arguments could include an inventory or other representation of the energy before and after the transfer in the form of temperature changes or motion of object.

Assessment Boundary: Assessment does not include calculations of energy.

Evidence Statements: MS-PS3-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Engaging in Argument from Evidence	PS3.B: Conservation of Energy and Energy	Energy and Matter
Engaging in argument from evidence in 6–8 builds on K–5	<u>Transfer</u>	Energy may take different forms (e.g. energy in
experiences and progresses to constructing a convincing	When the motion energy of an object changes,	fields, thermal energy, energy of motion).
argument that supports or refutes claims for either	there is inevitably some other change in energy	
explanations or solutions about the natural and designed	at the same time.	
worlds.		
Construct, use, and present oral and written arguments		
supported by empirical evidence and scientific reasoning to		
support or refute an explanation or a model for a		
phenomenon.		
Connections to Nature of Science		
Scientific Knowledge is Based on Empirical Evidence		
Science knowledge is based upon logical and conceptual		
connections between evidence and explanations		
Connections to other DCIs in this grade-band: MS.PS2.A	·	•
Articulation of DCIs across grade-bands: 4.PS3.C ; HS.PS3.A	A; HS.PS3.B	
NJSLS- ELA: RST.6-8.1, WHST.6-8.1		
NJSLS- Math: MP.2, 6.RP.A.1, 7.RP.A.2, 8.F.A.3		
	5E MODEL	

BOE APPROVAL: August 2016

MS-PS3-5. Construct, u	se, and present arguments to support the claim that when the kinetic energy of an object changes, energy is transferred to or from		
<u>the object.</u>			
Engage Anticipatory Set	Using the following resources have students view videos, read articles and engage in discussion on how kinetic energy changes, energy is transferred to or from objects. Go to the MS-PS3-5 section of the page. http://www.ck12.org/ngss/middle-school-physical-sciences/energy		
	Show students videos comparing crash tests on vehicles traveling at different speeds into different barriers and ask students to collaborate and show how energy transfers are occurring in the video.		
Exploration	Energy Transfer: Engineering Catapults		
Student Inquiry	In this activity, students will describe and model situations in which different amounts of potential energy are stored in a system and support the claim that when the kinetic energy of an object changes, that energy that has been transferred to or from the objects in the system. http://betterlesson.com/lesson/633997/energy-transfer-engineering-catapults		
	In these lessons:		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS3.B: Conservation of Energy and Energy Transfer		
	When the motion energy of an object changes, there is inevitably some other change in energy at the same time.		
Elaboration	Egg Projectile Project		
Extension Activity	http://www.ehow.com/how_8405300_do-egg-projectile-project.html		
Evaluation Assessment Tasks	Assessment Task A Construct, use, and present oral and written arguments supported by empirical evidence and scientific reasoning to support or refute an explanation or a model for a phenomenon. Students will complete Step 7 in the Energy Transfer Lab Activity. Using the Quick Guide to Creating a Well Developed Paragraph in Science, students will construct an argument supported by evidence.		

Cliffside Park Public Schools

Unit 6: Overview
Unit 6: Thermal Energy
Grade: 8
Content Area: Physical Science
Pacing: 30 Instructional Days
Essential Question
How can a standard thermometer be used to tell you how particles are behaving?
Student Learning Objectives (Performance Expectations)
MS-PS3-3. Apply scientific principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.
MS-ETS1-3. Analyze data from tests to determine similarities and differences among several design solutions to identify the best characteristics of each that
can be combined into a new solution to better meet the criteria for success.
MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be
achieved.
MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average
kinetic energy of the particles as measured by the temperature of the sample.
MS-ETS1-1. Define the criteria and constraints of a design problem with sufficient precision to ensure a successful solution, taking into account relevant
scientific principles and potential impacts on people and the natural environment that may limit possible solutions.
Unit Summary
In this unit, students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data, construct explanations, define problems and design solutions as they make sense of the difference between energy and temperature. They use the practices to make sense of how
the total change of energy in any system is always equal to the total energy transferred into or out of the system. The crosscutting concepts of energy and
matter, scale, proportion, and quantity, and influence of science, engineering, and technology on society and the natural world are the organizing concepts
for these disciplinary core ideas. Students ask questions, plan and carry out investigations, engage in argument from evidence, analyze and interpret data,
ideas
Technical Terms
Thermal energy transfer, thermal dynamics, fahrenheit, kinetic energy, mass, potential energy, gravity, conduction, convection, radiation, calorimetry
Formative Assessment Measures

Part A: How can a standard thermometer be used to tell you how particles are behaving?

Students who understand the concepts are able to:

Individually and collaboratively plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of particles as measured by the temperature of the sample.

As part of a planned investigation, identify independent and dependent variables and controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to support a claim.

Make logical and conceptual connections between evidence and explanations.

Part B: You are an engineer working for NASA. In preparation for a manned space mission to the Moon, you are tasked with designing, constructing, and testing a device that will keep a hot beverage hot for the longest period of time. It costs approximately \$10,000 per pound to take payload into orbit so the device must be lightweight and compact. The lack of atmosphere on the Moon produces temperature extremes that range from -157 degrees C in the dark to +121 degrees C in the light. Your devise must operate on either side of the Moon (https://spaceflightsystems.grc.nasa.gov/education/rocket/moon.html).

Students who understand the concepts are able to:

Apply scientific ideas or principles to design, construct, and test a design of a device that either minimizes or maximizes thermal energy transfer.

Determine design criteria and constraints for a device that either minimizes or maximizes thermal energy transfer.

Test design solutions and modify them on the basis of the test results in order to improve them.

Use a systematic process for evaluating solutions with respect to how well they meet criteria and constraints.

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science and technical texts.	Reason abstractly and quantitatively.		
(MS-PS3-5),MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) RST.6-8.1	(MS-PS3-4),(MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3),(MS-ETS1-4) MP.2		
Follow precisely a multistep procedure when carrying out experiments, taking	Summarize numerical data sets in relation to their context. (MS-PS3-4)		
measurements, or performing technical tasks. (MS-PS3-3),(MS-PS3-4) RST.6-8.3	6.SP.B.5		
Integrate quantitative or technical information expressed in words in a text with	Solve multi-step real-life and mathematical problems posed with positive		
a version of that information expressed visually (e.g., in a flowchart, diagram,	and negative rational numbers in any form (whole numbers, fractions, and		
model, graph, or table). (MS-PS3-3),(MS-PS3-4),(MS-ETS1-3) RST.6-8.7	decimals), using tools strategically. Apply properties of operations to		
Compare and contrast the information gained from experiments, simulations,	calculate with numbers in any form; convert between forms as appropriate;		
videos, or multimedia sources with that gained from reading a text on the same	and assess the reasonableness of answers using mental computation and		
topic. (MS-ETS1-2),(MS-ETS1-3) RST.6-8.9	estimation strategies. (MS-ETS1-1),(MS-ETS1-2),(MS-ETS1-3) 7.EE.3		
Conduct short research projects to answer a question (including a	Develop a probability model and use it to find probabilities of events.		
self-generated question), drawing on several sources and generating additional	Compare probabilities from a model to observed frequencies; if the		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

related, focused questions that allow for multiple avenues of exploration.		agreement is not good, explain pos	sible sources of the discrepancy.
(MS-ETS1-2) WHST.6-8.7		(MS-ETS1-4) 7.SP	
Gather relevant information from	multiple print and digital sources, using		
search terms effectively; assess th	e credibility and accuracy of each source; and		
quote or paraphrase the data and	conclusions of others while avoiding		
plagiarism and following a standar	rd format for citation. (MS-ETS1-1)		
WHST.6-8.8			
Draw evidence from informationa	l texts to support analysis, reflection, and		
research. (MS-ETS1-2) WHST.6-8.9)		
Integrate multimedia and visual di	isplays into presentations to clarify		
information, strengthen claims an	d evidence, and add interest. (MS-ETS1-4)		
SL.8.5			
Core Instructional Materials	Can include: Textbooks Series, Lab Materials,	etc.	
21st Century Life and Careers	ers CRP2, CRP4, CRP5, CRP 6, CRP7, CRP8 ,CRP11,CRP12		
Technology Standards	8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8	A.5, 8.1.8.D.4, 8.1.8.E.1,	
Modificati		ations	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry
Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

Cliffside Park Public Schools

	PHYSICAL SCIENCE	
MS. Energy		
MS-PS3-3. Apply scientific principles to design	n, construct, and test a device that either minimizes or maximizes therm	<u>al energy transfer.</u>
Clarification Statement: Examples of devices of	could include an insulated box, a solar cooker, and a Styrofoam cup.	
Assessment Boundary: Assessment does not i	nclude calculating the total amount of thermal energy transferred.	
Evidence Statements: MS-PS3-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	PS3.A: Definitions of Energy	Energy and Matter
<u>Solutions</u>	Temperature is a measure of the average kinetic energy of particles of	The transfer of energy can be tracked
Constructing explanations and designing	matter. The relationship between the temperature and the total energy	as energy flows through a designed or
solutions in 6–8 builds on K–5 experiences	of a system depends on the types, states, and amounts of matter	natural system.
and progresses to include constructing	present.	
explanations and designing solutions	PS3.B: Conservation of Energy and Energy Transfer	
supported by multiple sources of evidence	Energy is spontaneously transferred out of hotter regions or objects and	
consistent with scientific ideas, principles, and	into colder ones.	
theories.	ETS1.A: Defining and Delimiting an Engineering Problem	
Apply scientific ideas or principles to design,	The more precisely a design task's criteria and constraints can be	
construct, and test a design of an object, tool,	defined, the more likely it is that the designed solution will be	
process or system.	successful. Specification of constraints includes consideration of	
	scientific principles and other relevant knowledge that is likely to limit	
	possible solutions. (secondary)	
	ETS1.B: Developing Possible Solutions	
	A solution needs to be tested, and then modified on the basis of the test	-
	results in order to improve it. There are systematic processes for	
	evaluating solutions with respect to how well they meet criteria and	
	constraints of a problem. (secondary)	
Connections to other DCIs in this grade-band	: MS.PS1.B ; MS.ESS2.A ; MS.ESS2.C ; MS.ESS2.D	
Articulation of DCIs across grade-bands: 4.PS	3.B ; HS.PS3.B	
NJSLS- ELA: RST.6-8.3, WHST.6-8.7		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

NJSLS- Math: N/A	
	5E MODEL
MS-PS3-3. Apply scientif	ic principles to design, construct, and test a device that either minimizes or maximizes thermal energy transfer.
Engago	Using the following resources have students view videos, read articles and engage in discussion about thermal energy transfer. Go
Engage	to MS-PS3-3 section of the page.
Anticipatory Set	http://www.ck12.org/ngss/middle-school-physical-sciences/energy
	Build a Solar Oven
	In this activity, students will design, test and construct a solar oven, providing a concrete example of thermal energy transfer.
Exploration	http://www.hometrainingtools.com/a/build-a-solar-oven-project
Student Inquiry	Thermal Protection Systems: Day 1
Student inquiry	In this activity, students will apply scientific principles to design, construct and test a device that either minimizes or maximises
	thermal energy transfer.
	http://betterlesson.com/lesson/634000/thermal-protection-systems-day-1
	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS3.A: Definitions of Energy
	Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature and the
	total energy of a system depends on the types, states, and amounts of matter present.
Explanation	PS3.B: Conservation of Energy and Energy Transfer
Concepts and Practices	Energy is spontaneously transferred out of hotter regions or objects and into colder ones.
	ETS1.A: Defining and Delimiting an Engineering Problem
	The more precisely a design task's criteria and constraints can be defined, the more likely it is that the designed solution will be
	successful. Specification of constraints includes consideration of scientific principles and other relevant knowledge that is likely to
	limit possible solutions. (secondary)
	ETS1.B: Developing Possible Solutions
	A solution needs to be tested, and then modified on the basis of the test results in order to improve it. There are systematic
	processes for evaluating solutions with respect to how well they meet criteria and constraints of a problem. (secondary)
Elaboration	Build a Thermos

Cliffside Park Public Schools

GRADE: 8

Extension Activity In this activity, students will design, construct and test a thermos structure to determine which model keeps the warmest temperature. http://betterlesson.com/lesson/628050/build-a-thermos Assessment Task A Apply scientific ideas or principles to design, construct, and test a design of an object, tool, process or system. Students will be assessed based upon the execution of design and effectiveness of solar oven. If solar oven is not effective, students should demonstrate the ability to brainstorm solutions to modify and/or change design to make it work. Assessment Task B Thermal Protection System Design Challenge Student Lab Sheet

ENGINEERING DESIGN			
MS-ETS1-2 Engineering Design			
MS-ETS1-2. Evaluate competing design solutions using a systematic process to determine how well they meet the criteria and constraints of the problem.			
Evidence Statements: MS-ETS1-2			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Engaging in Argument from Evidence	ETS1.B: Developing Possible Solutions		
Engaging in argument from evidence in 6–8 builds on K–5	There are systematic processes for evaluating solutions		
experiences and progresses to constructing a convincing	with respect to how well they meet the criteria and		
argument that supports or refutes claims for either	constraints of a problem.		
explanations or solutions about the natural and designed			
world.			
Evaluate competing design solutions based on jointly			
developed and agreed-upon design criteria.			
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5			
Articulation of DCIs across grade-bands: 3-5.ETS1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B			
NJSLS- ELA: RST.6-8.1, RST.6-8.9, WHST.6-8.7 , WHST.6-8.9			
NJSLS- Math: MP.2, 7.EE.3			

Cliffside Park Public Schools

	ENGINEERING DESIGN	
MS-ETS1-3 Engineering Design		
MS-ETS1-3. Analyze data from tests to determin	ne similarities and differences among several design solutions to	identify the best characteristics of each
that can be combined into a new solution to be	tter meet the criteria for success.	
Evidence Statements: MS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	ETS1.B: Developing Possible Solutions	
Analyzing data in 6–8 builds on K–5 experiences	There are systematic processes for evaluating solutions with	
and progresses to extending quantitative	respect to how well they meet the criteria and constraints of a	
analysis to investigations, distinguishing	problem.	
between correlation and causation, and basic	Sometimes parts of different solutions can be combined to	
statistical techniques of data and error analysis.	create a solution that is better than any of its predecessors.	
Analyze and interpret data to determine	ETS1.C: Optimizing the Design Solution Although one design	
similarities and differences in findings.	may not perform the best across all tests, identifying the	
	characteristics of the design that performed the best in each	
	test can provide useful information for the redesign	
	process—that is, some of those characteristics may be	
	incorporated into the new design.	
Connections to MS-ETS1.B: Developing Possible	Solutions Problems include: Physical Science: MS-PS1-6, MS-PS	3-3, Life Science: MS-LS2-5
Connections to MS-ETS1.C: Optimizing the Design	gn Solution include: Physical Science: MS-PS1-6	
Articulation of DCIs across grade-bands: 3-5.ETS	1.A ; 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C	
NJSLS- ELA: RST.6-8.1, RST.6-8.7, RST.6-8.9		
NJSLS- Math: MP.2, 7.EE.3		

Cliffside Park Public Schools

GRADE: 8

ENGINEERING DESIGN

MS-ETS1-4 Engineering Design

MS-ETS1-4. Develop a model to generate data for iterative testing and modification of a proposed object, tool, or process such that an optimal design can be achieved.

Evidence Statements: MS-ETS1-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	ETS1.B: Developing Possible Solutions		
Modeling in 6–8 builds on K–5 experiences and	A solution needs to be tested, and then modified on		
progresses to developing, using, and revising models	the basis of the test results, in order to improve it.		
to describe, test, and predict more abstract	Models of all kinds are important for testing solutions.		
phenomena and design systems.	ETS1.C: Optimizing the Design Solution The iterative		
Develop a model to generate data to test ideas about	process of testing the most promising solutions and		
designed systems, including those representing inputs	modifying what is proposed on the basis of the test		
and outputs.	results leads to greater refinement and ultimately to an		
	optimal solution.		
Connections to MS-ETS1.B: Developing Possible Solutions Problems include: Physical Science: MS-PS1-6, MS-PS3-3, Life Science: MS-LS2-5			
Connections to MS-ETS1.C: Optimizing the Design Solution include: Physical Science: MS-PS1-6			
Articulation of DCIs across grade-bands: 3-5.ETS1.B ; 3-5.ETS1.C ; HS.ETS1.B ; HS.ETS1.C			
NJSLS- ELA: SL.8.5			
NJSLS- Math: MP.2, 7.SP			

Cliffside Park Public Schools

GRADE: 8

PHYSICAL SCIENCE

MS. Energy

MS-PS3-4. Plan an investigation to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the average kinetic energy of the particles as measured by the temperature of the sample.

Clarification Statement: Examples of experiments could include comparing final water temperatures after different masses of ice melted in the same volume of water with the same initial temperature, the temperature change of samples of different materials with the same mass as they cool or heat in the environment, or the same material with different masses when a specific amount of energy is added.

Assessment Boundary: Assessment does not include calculating the total amount of thermal energy transferred.

Evidence Statements: MS-PS3-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Planning and Carrying Out Investigations	PS3.A: Definitions of Energy	Scale, Proportion, and Quantity
Planning and carrying out investigations to answer	Temperature is a measure of the average kinetic	Proportional relationships (e.g. speed as
questions or test solutions to problems in 6–8 builds on	energy of particles of matter. The relationship between	<u>the ratio of distance traveled to time taken)</u>
K–5 experiences and progresses to include investigations	the temperature and the total energy of a system	among different types of quantities provide
that use multiple variables and provide evidence to	depends on the types, states, and amounts of matter	information about the magnitude of
support explanations or design solutions.	present.	properties and processes.
Plan an investigation individually and collaboratively, and	PS3.B: Conservation of Energy and Energy Transfer	
in the design: identify independent and dependent	The amount of energy transfer needed to change the	
variables and controls, what tools are needed to do the	temperature of a matter sample by a given amount	
gathering, how measurements will be recorded, and how	depends on the nature of the matter, the size of the	
many data are needed to support a claim.	sample, and the environment.	
Connections to Nature of Science		
Scientific Knowledge is Based on Empirical Evidence		
Science knowledge is based upon logical and conceptual		
connections between evidence and explanations		
Connections to other DCIs in this grade-band: MS.PS1.A ; MS.PS2.A ; MS.ESS2.C ; MS.ESS2.D ; MS.ESS3.D		
Articulation of DCIs across grade-bands: 4.PS3.C ; HS.PS1.B ; HS.PS3.A ; HS.PS3.B		
NJSLS- ELA: RST.6-8.3, WHST.6-8.7		
NJSLS- Math: MP.2, 6.SP.B.5		

BOE APPROVAL: August 2016

	5E MODEL		
MS-PS3-4. Plan an investig	ration to determine the relationships among the energy transferred, the type of matter, the mass, and the change in the		
average kinetic energy of	the particles as measured by the temperature of the sample.		
Using the following resources have students view videos, read articles and engage in discussion on how energy			
Anticipatory Sot	impact temperatures. Go to MS-PS3-4 section of the page.		
	http://www.ck12.org/ngss/middle-school-physical-sciences/energy		
	Heat Transfer Lab Rotation: Conduction, Convection and Radiation		
	In this lab activity, students will identify and explain the various ways that heat transfers through systems in the natural world.		
Exploration	http://betterlesson.com/lesson/634878/heat-transfer-lab-rotation-conduction-convection-and-radiation		
Student Inquiry	Materials Affect the Rate of Heat Transfer - Experimental Design		
Student inquiry	In this activity, students will compare different materials to determine which ones are better at preventing heat transfer. Using a		
given set of materials, students will work to design a penguin home which can maintain a cool temperature.			
	http://betterlesson.com/lesson/635989/materials-affect-the-rate-of-heat-transfer-experimental-design		
	In these lessons:		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.			
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
Explanation	PS3.A: Definitions of Energy		
Concepts and Practices	d Practices Temperature is a measure of the average kinetic energy of particles of matter. The relationship between the temperature a		
total energy of a system depends on the types, states, and amounts of matter present.			
	PS3.B: Conservation of Energy and Energy Transfer		
	The amount of energy transfer needed to change the temperature of a matter sample by a given amount depends on the nature		
	of the matter, the size of the sample, and the environ		
Elaboration	Related Activities		
Extension Activity	http://participatoryscience.org/standard/ms-ps3-4		
	Assessment Task A: Materials Affect the Rate of Heat Transfer- Penguin Home Design		
Evaluation	Plan an investigation individually and collaboratively, and in the design: identify independent and dependent variables and		
Assessment Tasks	controls, what tools are needed to do the gathering, how measurements will be recorded, and how many data are needed to		
	support a claim.		

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 8

Students will be evaluated on the planning and implementation of their penguin home design. The success of each student design will ultimately be tested by its ability to maintain a cool temperature.

Cliffside Park Public Schools

ENGINEERING DESIGN			
MS-ETS1-1 Engineering Design			
MS-ETS1-1. Define the criteria and constraints of a	a design problem with sufficient precision	to ensure a successful solution, taking into account relevant	
scientific principles and potential impacts on peop	ple and the natural environment that may	limit possible solutions.	
Evidence Statements: MS-ETS1-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting	Influence of Science, Engineering, and Technology on Society	
Asking questions and defining problems in grades	Engineering Problems	and the Natural World	
6–8 builds on grades K–5 experiences and	The more precisely a design task's criteria	All human activity draws on natural resources and has both	
progresses to specifying relationships between	and constraints can be defined, the more	short and long-term consequences, positive as well as negative,	
variables, and clarifying arguments and models.	likely it is that the designed solution will	for the health of people and the natural environment. The uses	
Define a design problem that can be solved	be successful. Specification of constraints	of technologies and limitations on their use are driven by	
through the development of an object, tool,	includes consideration of scientific	individual or societal needs, desires, and values; by the findings	
process or system and includes multiple criteria	principles and other relevant knowledge	of scientific research; and by differences in such factors as	
and constraints, including scientific knowledge	that are likely to limit possible solutions.	climate, natural resources, and economic conditions.	
that may limit possible solutions.			
Connections to MS-ETS1.A: Defining and Delimitin	ng Engineering Problems include: Physical	Science: MS-PS3-3	
Articulation of DCIs across grade-bands: 3-5.ETS1.	A ; 3-5.ETS1.C ; HS.ETS1.A ; HS.ETS1.B		
NJSLS- ELA: RST.6-8.1, WHST.6-8.8			
NJSLS- Math: MP.2, 7.EE.3			

Cliffside Park Public Schools

GRADE: 8

Unit 7: Overview

Unit 7: The Electromagnetic Spectrum

Grade: 8

Content Area: Physical Science

Pacing: 20 Instructional Days

Essential Question

How do cell phones work?

Student Learning Objectives (Performance Expectations)

MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in a wave.

MS-PS4-2. Develop and use a model to describe that waves are reflected, absorbed, or transmitted through various materials.

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Unit Summary

In this unit of study, students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information in order to describe and predict characteristic properties and behaviors of waves. Students also apply their understanding of waves as a means of sending digital information. The crosscutting concepts of patterns and structure and function are used as organizing concepts for these disciplinary core ideas. Students develop and use models, use mathematical thinking, and obtain, evaluate, and communicate information.Students are also expected to use these practices to demonstrate understanding of the core ideas.

Technical Terms

Amplitude, wavelength, electromagnetic waves, repeating waves, reflected waves, absorbed waves, transmitted, waves, refracted waves, analog signals, fiber optic cable, light pulses, radio wave pulses, binary patterns

Formative Assessment Measures

Part A: Why do surfers love physicists?

Students who understand the concepts are able to:

Use mathematical representations to describe and/or support scientific conclusions about how the amplitude of a wave is related to the energy in a wave.

Use mathematical representations to describe a simple model.

Part B: How do the light and sound system in the auditorium work?

Students who understand the concepts are able to:

Develop and use models to describe the movement of waves in various materials.

Part C: If rotary phones worked for my grandparents, why did they invent cell phones?

Students who understand the concepts are able to:

Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify claims that digitized signals are a more reliable way to encode and transmit information than analog signals are.

Interdisciplinary Connections			
NJSLS	S- ELA	NJ	SLS- Mathematics
Cite specific textual evidence to su	pport analysis of science and	Reason abstractly and quantitatively	. (MS-PS4-1) MP.2
technical texts. (MS-PS4-3) RST.6-8	3.1	Model with mathematics. (MS-PS4-1) MP.4
Determine the central ideas or cor	nclusions of a text; provide an	Understand the concept of a ratio an	d use ratio language to describe a ratio relationship
accurate summary of the text disti	nct from prior knowledge or	between two quantities. (MS-PS4-1)	6.RP.A.1
opinions. (MS-PS4-3) RST.6-8.2		Use ratio and rate reasoning to solve	real-world and mathematical problems.
Compare and contrast the informa	ition gained from experiments,	(MS-PS4-1) 6.RP.A.3	
simulations, videos, or multimedia	sources with that gained from	Recognize and represent proportiona	al relationships between quantities. (MS-PS4-1)
reading a text on the same topic. (MS-PS4-3) RST.6-8.9	7.RP.A.2	
Draw evidence from informational texts to support analysis,		Interpret the equation y = mx + b as defining a linear function, whose graph is a straight	
reflection, and research. (MS-PS4-3) WHST.6-8.9		line; give examples of functions that are not linear. (MS-PS4-1) 8.F.A.3	
Integrate multimedia and visual di	splays into presentations to clarify		
information, strengthen claims and	d evidence, and add interest.		
(MS-PS4-1),(MS-PS4-2) SL.8.5			
Core Instructional Materials	Can include: Textbooks Series, Lat	o Materials, etc.	
21st Century Life and Careers	CRP2, CRP4, CRP5, CRP 6, CRP7, C	RP8 ,CRP11,CRP12	
Technology Standards 8.1.8.A.1, 8.1.8.A.2, 8.1.8.A.3, 8.1.8.A.4, 8.1.8.A.5, 8.1.8.D.4, 8.1.8.E.1,			
Modifications			
English Language Learners	Special Education	At-Risk	Gifted and Talented
Scaffolding	Word walls	Teacher tutoring	Curriculum compacting
Word walls	Visual aides	Peer tutoring	Challenge assignments
Sentence/paragraph frames	Graphic organizers	Study guides	Enrichment activities
Bilingual dictionaries/translation	Multimedia	Graphic organizers	Tiered activities
Think alouds	Leveled readers	Extended time	Independent research/inquiry

Cliffside Park Public Schools

Read alouds	Assistive technology	Parent communication	Collaborative teamwork
Highlight key vocabulary	Notes/summaries	Modified assignments	Higher level questioning
Annotation guides	Extended time	Counseling	Critical/Analytical thinking tasks
Think-pair- share	Answer masking		Self-directed activities
Visual aides	Answer eliminator		
Modeling	Highlighter		
Cognates	Color contrast		

Cliffside Park Public Schools

PHYSICAL SCIENCE				
MS. Waves and Their Applications in Technologies for Inform	ation Transfer			
MS-PS4-1. Use mathematical representations to describe a si	mple model for waves that includes how	w the amplitude of a wave is related to the energy in		
<u>a wave.</u>				
Clarification Statement: Emphasis is on describing waves with	both qualitative and quantitative thinkin	ng.		
Assessment Boundary: Assessment does not include electrom	agnetic waves and is limited to standard	repeating waves.		
Evidence Statements: MS-PS1-4				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Using Mathematics and Computational Thinking	PS4.A: Wave Properties	Patterns		
Mathematical and computational thinking at the 6–8 level	A simple wave has a repeating pattern	Graphs and charts can be used to identify patterns in		
builds on K–5 and progresses to identifying patterns in large	with a specific wavelength, frequency,	<u>data.</u>		
data sets and using mathematical concepts to support	and amplitude.			
explanations and arguments.				
Use mathematical representations to describe and/or support				
scientific conclusions and design solutions.				
Connections to Nature of Science	Connections to Nature of Science			
cientific Knowledge is Based on Empirical Evidence				
Science knowledge is based upon logical and conceptual				
connections between evidence and explanations.				
Connections to other DCIs in this grade-band: N/A				
Articulation of DCIs across grade-bands: 4.PS3.A ; 4.PS3.B ; 4.	PS4.A ; HS.PS4.A ; HS.PS4.B			
NJSLS- ELA: SL.8.5				
NJSLS- Math: MP.2, MP.4, 6.RP.A.1, 6.RP.A.3, 7.RP.A.2, 8.F.A.3				
5E MODEL				
MS-PS4-1. Use mathematical representations to describe a simple model for waves that includes how the amplitude of a wave is related to the energy in				
a wave.				
Types of Waves				
Anticipatory Set https://www.youtube.com/watch?v=v	https://www.youtube.com/watch?v=w2s2fZr8sqQ			
Demonstration				

	Use an example of "wall ball" and the bouncing of a ball. Predict where the ball will bounce given the angle of incidence. Relate this
	to the Law of Reflection and the angle of incidence and reflection. Discuss the difference between regular and diffused reflection.
Exploration	Wave Behavior Labs
	In these lab activities, students will create simple mathematical representations of waves and identify characteristic properties of
	waves.
Student inquiry	Day 1: http://betterlesson.com/lesson/633386/wave-behavior-lab-rotation-day-1
	Day 2 :http://betterlesson.com/lesson/633450/wave-behavior-lab-rotation-day-2
Explanation Concepts & Practices	In these lessons:
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS4.A: Wave Properties
	A simple wave has a repeating pattern with a specific wavelength, frequency, and amplitude. (MS-PS4-1)
	Have students review the graphs they created during the lab. Ask them to predict the change in the energy of the wave if any one of
Flaboration	the parameters of the wave is changed.
Extension Activity	Wavelength: http://www.ck12.org/physical-science/Wavelength-in-Physical-Science/
	Wave Frequency: http://www.ck12.org/physical-science/Wave-Frequency-in-Physical-Science/
	Wave Amplitude:http://www.ck12.org/physical-science/Wave-Amplitude-in-Physical-Science/
Evaluation Assessment Tasks	Assessment Task A: Graphing of Characteristics Properties of Waves
	Use mathematical representations to describe and/or support scientific conclusions and design solutions.
	http://betterlesson.com/lesson/resource/3158929/graphing-of-characteristic-properties-of-waves?from=resource_image
	Assessment Task B: Lab Closure Questions
	What evidence can you cite that different types of waves interact with matter in different ways?
	How can you create a mathematical representation of wave properties?

GRADE: 8

PHYSICAL SCIENCE					
MS. Waves and Their Applicati	ns in Technologies for Information Transfer				
MS-PS4-2. Develop and use a n	odel to describe that waves are reflected, absorbed, or transmitted through various	materials.			
Clarification Statement: Empha	sis is on both light and mechanical waves. Examples of models could include drawings,	simulations, and written descriptions.			
Assessment Boundary: Assessn	ent is limited to qualitative applications pertaining to light and mechanical waves.				
Evidence Statements: MS-PS4-2					
Science & Engineering Practic	Disciplinary Core Ideas	Cross-Cutting Concepts			
Developing and Using Models	PS4.A: Wave Properties	Structure and Function			
Modeling in 6–8 builds on K–5 a	nd A sound wave needs a medium through which it is transmitted.	Structures can be designed to serve			
progresses to developing, using	PS4.B: Electromagnetic Radiation	particular functions by taking into			
and revising models to describe	When light shines on an object, it is reflected, absorbed, or transmitted through	account properties of different			
test, and predict more abstract	the object, depending on the object's material and the frequency (color) of the	materials, and how materials can be			
phenomena and design systems	light.	shaped and used.			
Develop and use a model to	The path that light travels can be traced as straight lines, except at surfaces				
describe phenomena.	between different transparent materials (e.g., air and water, air and glass) where				
	the light path bends.				
	A wave model of light is useful for explaining brightness, color, and the				
	frequency-dependent bending of light at a surface between media.				
	However, because light can travel through space, it cannot be a matter wave, like				
	sound or water waves.				
Connections to other DCIs in th	s grade-band: MS.LS1.D				
Articulation of DCIs across grac	e-bands: 4.PS4.B ; HS.PS4.A ; HS.PS4.B ; HS.ESS1.A ; HS.ESS2.A ; HS.ESS2.C ; HS.ESS2.I	D			
NJSLS- ELA: SL.8.5					
NJSLS- Math: N/A					
	5E MODEL				
MS-PS4-2. Develop and use a n	odel to describe that waves are reflected, absorbed, or transmitted through various	materials.			
Provide	an example of how light or sound can be reflected, absorbed or transmitted through a	medium (between objects).			
Engage Find on	Find one object within the classroom that will represent light being reflected, absorbed or transmitted and bring it back to your seat				
(examp	es of: translucent, opaque and transparent).				

SUBJECT: SCIENCE/Grade 8

BOE APPROVAL: August 2016

Cliffside Park Public Schools

GRADE: 8

	The class will create a list on the Smartboard and discuss whether their "object" reflects, absorbs or transmits light and how/why	
	they choose that "object."	
	Introduction to Light Video: https://www.youtube.com/watch?v=yHJ_X_IXtB8_	
	Indoor Rainbow: http://www.weatherwizkids.com/experiments-rainbow-indoor.htm	
	http://www.bozemanscience.com/waves	
		What is
		or gasse
Exploration		your thi
Student Inguiry		<u>Light Ac</u>
		https://
		Sound A
		Water A
	In these lessons:	
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
	PS4.A: Wave Properties	
	A sound wave needs a medium through which it is transmitted. (MS-PS4-2)	
Explanation	PS4.B: Electromagnetic Radiation	
Concepts and Practices	When light shines on an object, it is reflected, absorbed, or transmitted through the object, depending on the object's material and	
	the frequency (color) of the light. (MS-PS4-2)	
	The path that light travels can be traced as straight lines, except at surfaces between different transparent materials (e.g., air and	
	water, air and glass) where the light path bends. (MS-PS4-2)	
	A wave model of light is useful for explaining brightness, color, and the frequency-dependent bending of light at a surface between	
	media. (MS-PS4-2)	
	However, because light can travel through space, it cannot be a matter wave, like sound or water waves. (MS-PS4-2)	
	Sunscreens and Sunburns	
Elaboration	http://www.haspi.org/uploads/6/5/2/9/65290513/06_physicalsunscreen.pdf	
Extension Activity		
Evaluation	Assessment Task A	

Cliffside Park Public Schools

GRADE: 8

 Develop and use a model to describe phenomena.

 Assessment Tasks
 After completing Exploring Light Properties Investigation, students will complete the What Did You Learn Today? worksheet to describe that waves are reflected, absorbed, or transmitted through various materials.

SUBJECT: SCIENCE/Grade 8 BOE APPROVAL: August 2016

PHYSICAL SCIENCE

MS. Waves and Their Applications in Technologies for Information Transfer

MS-PS4-3. Integrate qualitative scientific and technical information to support the claim that digitized signals are a more reliable way to encode and transmit information than analog signals.

Clarification Statement: Emphasis is on a basic understanding that waves can be used for communication purposes. Examples could include using fiber optic cable to transmit light pulses, radio wave pulses in wifi devices, and conversion of stored binary patterns to make sound or text on a computer screen.

Assessment Boundary: Assessment does not include binary counting. Assessment does not include the specific mechanism of any given device.

Evidence Statements: MS-PS4-3

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts			
Obtaining, Evaluating, and Communicating	PS4.C: Information Technologies and	Structure and Function			
Information	Instrumentation	Structures can be designed to serve particular functions.			
Obtaining, evaluating, and communicating	Digitized signals (sent as wave pulses) are a more	Connections to Engineering, Technology, and Applications			
information in 6-8 builds on K-5 and	reliable way to encode and transmit information.	of Science			
progresses to evaluating the merit and		Influence of Science, Engineering, and Technology on Society			
validity of ideas and methods.		and the Natural World Technologies extend the			
Integrate qualitative scientific and technical		measurement, exploration, modeling, and computational			
information in written text with that		capacity of scientific investigations.			
contained in media and visual displays to		Connections to Nature of Science			
clarify claims and findings.		Science is a Human Endeavor			
		Advances in technology influence the progress of science			
		and science has influenced advances in technology.			
Connections to other DCIs in this grade-band	: N/A				
Articulation of DCIs across grade-bands: 4.PS	4.C ; HS.PS4.A ; HS.PS4.C				
NJSLS- ELA: RST.6-8.1, RST.6-8.2, RST.6-8.9, WHST.6-8.9					
NJSLS- Math: N/A					
	5E MODEL				
MS-PS4-3. Integrate qualitative scientific and	technical information to support the claim that of	digitized signals are a more reliable way to encode and			
transmit information than analog signals.					
Engage Analog vs. Digital Vi	Analog vs. Digital Video: http://www.diffen.com/difference/Analog_vs_Digital				

Cliffside Park Public Schools

GRADE: 8

	Guiding Question		
Anticipatory Set	Besides digital (computers, phones, etc.) what are other ways that you have heard/seen/read of transmitting information (mail,		
	music, video, etc.) without the use of computers?		
	http://educators.brainpop.com/bp-topic/analog-and-digital-recording/		
	<u>Day 1:</u>		
	Have students read the following article about analog vs. digital media and information		
	http://www.diffen.com/difference/Analog_vs_Digital		
	What are examples of analog vs. digital media?		
	How has the real world transitioned from analog to digital in the last 10 years?		
	Please provide examples from your life where you were able to see and record these changes.		
	Day 2:		
Exploration Examples of Media to Explore: Music, Images, Phone/Communication, Maps/Satellites, Video Games (8 bit cartridge			
Student Inquiry	download to console - no disc required!), shopping (go to mall vs. online shopping).		
	Below is a list of items that students can be asked to research how it has changed/grown to be more digital as time has gone by. It		
	is important for students to realize the resources and learning potential they NOW have available to them (that once did not exist		
	due to technological constraints).		
	Clocks, Medical Devices, Telephones, Cassettes/Radio vs. Pandora/Sirius, Paper Maps vs. Google Maps/Earth, Cars		
	Day 3:		
	Digital vs. Analog Signal Project: Students will be able to explain why digital wave signals are a more reliable way of		
	communicating information than analog wave signals.		
	https://sciencewithmrsbowling.wordpress.com/resources/digital-vs-analog-signal-project/		
Explanation Concepts and Practices	In these lessons:		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS4.C: Information Technologies and Instrumentation		
	Digitized signals (sent as wave pulses) are a more reliable way to encode and transmit information. (MS-PS4-3)		
Elaboration	http://faraday.theiet.org/resources/overview/analogue-digital.cfm		
	Bluetooth and WiFi: How do they work? What is actually being transmitted? How have these technologies help to make every day		
EXTENSION ACTIVITY	"activities" easier? (Communication, Satellites, NASA Probe Missions - Pluto, Fiber Optic Cables vs. Dial-Up). What's a cloud?		

Cliffside Park Public Schools

GRADE: 8

 Assessment Task A

 Integrate qualitative scientific and technical information in written text with that contained in media and visual displays to clarify

 Evaluation

Assessment Tasks
After completed Day 3 (Digital vs. Analog Signal Project), students will explain in written text why digital signals are better than
analog signals.