

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Unit 1: Overview
Unit 1: Kinematics
Content Area: Physics
Pacing: 25 Instructional days
Essential Questions
1. How vectors are used to analyze motion?
2. What is the difference between speed and velocity?
3. What are the relationships between position, velocity, and acceleration?
Student Learning Objectives (Performance Expectations)
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic
object, its mass, and its acceleration.
HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through
engineering.
Unit Summary
 By the end of this unit, students will: understand the general relationships among position, velocity, and acceleration for the motion of a particle along a straight line. understand the special case of motion with constant acceleration. understand the relationship among words, equations and graphs for motion in one dimension.
By the end of this unit, students will be able to: solve problems specifically by first writing out all variables present, determining the appropriate equation to use, solving the equation for the variable needed inserting numbers into the equation, and finally performing calculations with a scientific calculator. apply the qualitative definition of acceleration (speeding up, or slowing down, and/or changing direction) to determine if an object is accelerating.
• Students will be able to determine velocity by taking the slope of a position-time graph, and determine acceleration from the slope of a velocity-time graph, as well as the displacement by calculating the area under the curve.
Students will correlate negative and positive slopes with positive and negative velocities and accelerations.
Technical Terms
Newton's Laws of Motion, vectors and scalars, acceleration, distance vs. displacement, speed vs. velocity, acceleration, non-relativistic speed, vector drawings,

GRADE: 9-12

BOE APPROVAL: 8/2018

causal relationships, correlational relationships, kinematics equations	#1, #2, and #3.	
Formative &	Summative Assessment Measures	
During the Smart Notebook lesson designed to introduce concepts, stu work/homework questions and a response system. Classwork and Homework questions will be discussed as a class and i	idents will be continually questioned on these concepts using a combination of class misconceptions will be addressed by the teacher prior to the formal evaluations listed below.	
Average Speed Quiz Equation 1 Quiz Equation 2 Quiz Equation 3 Quiz Mixed Equations Quiz Kinematics Test Other assessments on the NJCTL website are optional and can be use	ed as needed.	
Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-ETS1-1),(HS-ETS1-3),(HS-	
technical texts, attending to important distinctions the author makes	ETS1-4) MP.2	
and to any gaps or inconsistencies in the account. (HS-PS2-1) RST.11-	Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)	
12.1	MP.4	
Integrate and evaluate multiple sources of information presented in	Use units as a way to understand problems and to guide the solution of multi-step	
diverse formats and media (e.g., quantitative data, video, multimedia) problems; choose and interpret units consistently in formulas; choose and interpret the	
in order to address a question or solve a problem. (HS-PS2-1) RST.11-	scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2) HSN.Q.A.1	
12.7	Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-	
Evaluate the hypotheses, data, analysis, and conclusions in a science	PS2-2) HSN.Q.A.2	
or technical text, verifying the data when possible and corroborating	Choose a level of accuracy appropriate to limitations on measurement when reporting	
or challenging conclusions with other sources of information. (HS-	quantities. (HS-PS2-1),(HS-PS2-2) HSN.Q.A.3	
ETS1-3) RST.11-12.8	Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1)	
Synthesize information from a range of sources (e.g., texts,	HSA.SSE.A.1	
experiments, simulations) into a coherent understanding of a process	, Choose and produce an equivalent form of an expression to reveal and explain properties	

Cliffside Park Public Schools

GRADE: 9-12

phenomenon, or concept, resolvin	g conflicting information when	of the quantity represented by the expression	n. HSA.SSE.B.3 (HS-PS2-1)	
possible. (HS-ETS1-3) RST.11-12.9 C		Create equations and inequalities in one variable and use them to solve problems. (HS-		
Conduct short as well as more sustained research projects to answer		PS2-1),(HS-PS2-2) HSA.CED.A.1		
a question (including a self-genera	ted question) or solve a problem;	Create equations in two or more variables to represent relationships between quantities;		
narrow or broaden the inquiry wh	en appropriate; synthesize multiple	graph equations on coordinate axes with labe	els and scales. (HS-PS2-1),(HS-PS2-2)	
sources on the subject, demonstra	ting understanding of the subject	HSA.CED.A.2		
under investigation.(HS-PS2-3),(HS	-ETS1-3) WHST.11-12.7	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in		
Draw evidence from informational	texts to support analysis,	solving equations. (HS-PS2-1),(HS-PS2-2) HSA.CED.A.4		
reflection, and research. (HS-PS2-1) WHST.11-12.9	Graph functions expressed symbolically and s	show key features of the graph, by in hand in	
		simple cases and using technology for more o	complicated cases. (HS-PS2-1) HSF-IF.C.7	
		Represent data with plots on the real numbe	r line (dot plots, histograms, and box plots).	
		(HS-PS2-1) HSS-IS.A.1		
Core Instructional Materials	ore Instructional Materials Can include: NJCTL Presentations/Classwork, Lab Materials, etc.			
Career ready Practices	ctices CRP 1, CRP 2, CRP 5, CRP 6, CRP 7, CRP 9, CRP 11			
Technology Standards	8.1.12.A.1, 8.1.12.A.2, 8.1.12.A.3, 8	3.1.12.E.1		
		Modifications		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Word walls	Word walls	Teacher tutoring	Curriculum compacting	
Formula Displays	Visual aides	Peer tutoring	Challenge assignments	
Bilingual translation	Multimedia	Study guides	Tiered activities	
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork	
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning	
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks	
Modeling	Extended time	Parent communication		
Spanish Articles: NEWSELA	Answer masking	Modified assignments		
Spanish Articles: NEWSELA	Answer masking Answer eliminator	Modified assignments		
Spanish Articles: NEWSELA *All presentations and problems	Answer masking Answer eliminator Highlighter	Modified assignments		

Cliffside Park Public Schools

BOE APPROVAL: 8/2018

PHYSICS

HS-PS2-1: Motion Properties of an Object

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship amongthe net force on a macroscopic object, its mass, and its acceleration.

Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects in motion, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.

Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.

Evidence Statements: HS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect
Analyzing data in 9–12 builds on K–8 and progresses to	Newton's second law accurately predicts	Empirical evidence is required to differentiate
introducing more detailed statistical analysis, the comparison of	changes in the motion of macroscopic objects.	between cause and correlation and make
data sets for consistency, and the use of models to generate and		claims about specific causes and effects.
analyze data.		
Analyze data using tools, technologies, and/or models (e.g.,		
computational, mathematical) in order to make valid and reliable		
scientific claims or determine an optimal design solution.		
Connections to Nature of Science		
Science Models, Laws, Mechanisms, and Theories Explain Natural		
Phenomena		
Theories and laws provide explanations in science.		
Laws are statements or descriptions of the relationships among		
observable phenomena.		
Connections to other DCIs in this grade-band: HS.PS3.C ; HS.ESS1.A ; HS.ESS1.C ; H.ESS2.C		
Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS3.C		
NJSLS- ELA: RST.11-12.1 , RST.11-12.7 , WHST.11-12.9		
NJSLS- Math: MP.2 , MP.4 , HSN.Q.A.1 , HSN.Q.A.2 , HSN.Q.A.3 , HSA.SSE.A.1 , HSA.SSE.B.3 , HSA.CED.A.1 , HSA.CED.A.2 , HSA.CED.A.4 , HSF-IF.C.7 , HSS-IS.A.1		

Cliffside Park Public Schools

BOE APPROVAL: 8/2018

	EE Model
HS-PS2-1: Analyze data	to support the claim that Newton's second law of motion describes the mathematical relationship among the pet force on a
macroscopic object, its	mass, and its acceleration.
	Hands On Activity:
	Speed Demonstration
	The demonstration will allow students to discover the concept and mathematical interpretation of speed. Students will be given 5 to 10
	minutes to work in groups of five to find which of three pull back cars travel the fastest. However, the students cannot race more than
	one car at a time. After 5 to 10 minutes, the teacher will begin asking equation questions. The equation questions slowly introduce students to the mathematical interpretation of speed
France	students to the mathematical interpretation of speed.
Engage Anticipatory Set	See video for further explanation: https://youtu.be/B7zdabE4rbA
	Free Fall Demonstration:
	The demonstration will allow students to discover the conceptual and mathematical interpretations of freefall. Students will be given 5 to 10 minutes to work in groups of five to find the final speed of a baseball before it hits the ground. The students will be given a baseball and a timer. After 5 to 10 minutes, the teacher will begin asking equation questions. The equation questions slowly introduce students to an algebraic derivation of the first kinematics equation.
	The following video provides additional explanation: https://youtu.be/6TWYVZn_ogM
	Kinematics:
Exploration	Students will analyze one dimensional motion without considering the forces acting on the object
Student Inquiry	
	Applying Newton's Second Law Quantitatively

Cliffside Park Public Schools

GRADE: 9-12

	Students will solve a variety of problems involving motional properties of an object to introduce Newton's Laws of Motion.
	Combining Newton's Second Law and Kinematics
	Students will solve a variety of problems with equations of motion to introduce Newton's Laws of Motion.
	NJCTL Lessons:
	https://njctl.org/courses/science/algebra-based-physics/
	Daily lesson breakdown, unit plans, and pacing guides available.
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	
	NJCTL Lessons:
	https://njctl.org/courses/science/algebra-based-physics/
	NICTI Lessons.
Elaboration	Virtual simulations PHFT Labs and Lab activities are provided
Extension Activity	https://pictl.org/courses/science/algebra-based-physics/
	NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content vocabulary.
Evoluation	Assessment Task:
Assossment Tasks	Students will be able to represent the unknown variables associated with the motion of objects using algebraic equations and then
Assessment Tasks	calculate these unknown variables using the three kinematics equations.

Cliffside Park Public Schools

GRADE: 9-12

Unit 2: Overview
Unit 2: Dynamics
Content Area: Physics
Pacing: 26 Instructional days
Essential Questions
1. How can an object be made to accelerate?
2. How do forces interact?
3. How do objects respond to multiple forces acting on them?
Student Learning Objectives (Performance Expectations)
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic
object, its mass, and its acceleration.
HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through
engineering.
Unit Summary
By the end of this unit, students will know: • How to apply the concept of inertia to determine the motion of an object experiencing a net force and zero net force. • How to algebraically manipulate and utilize the following equations: $\Sigma F = ma$ fk = µk FN fs < µs FN w = mg • How to solve problems specifically by first sketching the setup, drawing a free body diagram, determining the forces present, aligning coordinate axes, solving the equation for the variable needed, inserting numbers into the equation, and finally performing calculations with a scientific calculator. • How to determine the weight of objects in settings with vertical accelerations and determine the difference between true weight and apparent weight (normal force). • How to identify when friction must be considered in a problem and when it can be ignored, determine the type of friction present, and the point at which the static friction is overcome to result in kinetic friction. • How to identify all the different types of force present in a problem. They will draw the relative magnitudes and directions of the forces on a free body diagram and note the direction of acceleration
BOE adopted 5/2017

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

I have to after drawing a free body diagram, students will apply Newton's Casend Law to a problem, determining the pat fares esting on an abject. They will apply
for not forces and forces specific to the problem.
Nor her forces and forces specific to the problem.
 How to reenary the following forces and industrate their relative magnitudes and directions when problem solving. Applied Fereo
o Applied Force
o Normal Force
o weight (Gravitational Force)
o Apparent weight
0 Tension a Friction (Kinatia and Statia)
o Fiction (Kinetic and Static)
• How to solve Atwood machine type problems.
By the end of this unit, students will be able to:
Describe inertia using Newton's First Law.
Relate force, mass and acceleration using Newton's Second Law.
• Solve problems using Newton's Second Law.
Describe inertial reference frames.
Differentiate between weight and mass.
Describe weight as a force in terms of mass and gravitational acceleration.
Describe the normal force and understand the conditions in which it exists.
 Identify a reaction force if given an action force.
Determine whether a frictional force is kinetic (moving) or static (not moving).
• Solve problems involving static and kinetic friction.
Identify and solve for tension force.
• Draw free body diagrams.
 Solve problems involving multiple forces and accelerations
Technical Terms
Newton's Laws of Motion, inertia, mass, acceleration, force, weight vs. mass, tension, friction, Free Body Diagram, normal force, static friction vs. kinetic friction,
Formative & Summative Assessment Measures
During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class

work/homework questions and a response system.

Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher prior to the formal evaluations listed below.

• Newton's Second Law Quiz • Weight and Mass Quiz • Friction Quiz (Either one/or both, at discretion of teacher.) • Dynamics Test

Other assessments on the NJCTL website are optional and can be used as needed.

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Cite specific textual evidence to support analysis of science and	Reason abstractly and quantitatively. (HS-PS2-1),(HS-PS2-2),(HS-ETS1-1),(HS-ETS1-3),(HS-	
technical texts, attending to important distinctions the author makes	ETS1-4) MP.2	
and to any gaps or inconsistencies in the account. (HS-PS2-1) RST.11-	Model with mathematics. (HS-PS2-1),(HS-PS2-2),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-4)	
12.1	MP.4	
Integrate and evaluate multiple sources of information presented in	Use units as a way to understand problems and to guide the solution of multi-step	
diverse formats and media (e.g., quantitative data, video, multimedia	problems; choose and interpret units consistently in formulas; choose and interpret the	
in order to address a question or solve a problem. (HS-PS2-1) RST.11-	scale and the origin in graphs and data displays. (HS-PS2-1),(HS-PS2-2) HSN.Q.A.1	
12.7	Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-1),(HS-	
Evaluate the hypotheses, data, analysis, and conclusions in a science	PS2-2) HSN.Q.A.2	
or technical text, verifying the data when possible and corroborating	Choose a level of accuracy appropriate to limitations on measurement when reporting	
or challenging conclusions with other sources of information. (HS-	quantities. (HS-PS2-1),(HS-PS2-2) HSN.Q.A.3	
ETS1-3) RST.11-12.8	Interpret expressions that represent a quantity in terms of its context. (HS-PS2-1)	
Synthesize information from a range of sources (e.g., texts,	HSA.SSE.A.1	
experiments, simulations) into a coherent understanding of a process	Choose and produce an equivalent form of an expression to reveal and explain properties	
phenomenon, or concept, resolving conflicting information when	of the quantity represented by the expression. HSA.SSE.B.3 (HS-PS2-1)	
possible. (HS-ETS1-3) RST.11-12.9	Create equations and inequalities in one variable and use them to solve problems. (HS-	
Conduct short as well as more sustained research projects to answer	PS2-1),(HS-PS2-2) HSA.CED.A.1	
a question (including a self-generated question) or solve a problem;	Create equations in two or more variables to represent relationships between quantities;	
narrow or broaden the inquiry when appropriate; synthesize multiple	graph equations on coordinate axes with labels and scales. (HS-PS2-1),(HS-PS2-2)	
sources on the subject, demonstrating understanding of the subject	HSA.CED.A.2	
under investigation.(HS-PS2-3),(HS-ETS1-3) WHST.11-12.7	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in	
Draw evidence from informational texts to support analysis,	solving equations. (HS-PS2-1),(HS-PS2-2) HSA.CED.A.4	
reflection, and research. (HS-PS2-1) WHST.11-12.9	Graph functions expressed symbolically and show key features of the graph, by in hand in	
	simple cases and using technology for more complicated cases. (HS-PS2-1) HSF-IF.C.7	
	Represent data with plots on the real number line (dot plots, histograms, and box plots).	
	(HS-PS2-1) HSS-IS.A.1	
Core Instructional Materials Can include: NJCTL Presentations/	Classwork, Lab Materials, etc.	

Career ready Practices	ices CRP 2, CRP 4, CRP 5, CRP 6, CRP 7, CRP 8 , CRP 11, CRP 12		
Technology Standards	8.1.12.A.1, 8.1.12.A.3, 8.1.12.E.1,8.2.12.B.4, 8.2.12.C.5		
Modifications			
English Language Learners	Special Education At-Risk Gifted and Talented		
Word walls	Word walls	Teacher tutoring	Curriculum compacting
Formula Displays	Visual aides	Peer tutoring	Challenge assignments
Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks
Modeling	Extended time	Parent communication	
Spanish Articles: NEWSELA	Answer masking	Modified assignments	
	Answer eliminator		
*All presentations and problems	Highlighter		
available entirely in Spanish.	Color contrast		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS

HS-PS2-1: Dynamics: Forces and Interactions

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a

macroscopic object, its mass, and its acceleration.

Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects in motion, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.

Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.

Evidence Statements: HS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect
Analyzing data in 9–12 builds on K–8 and progresses to	Newton's second law accurately predicts	Empirical evidence is required to differentiate
introducing more detailed statistical analysis, the comparison of	changes in the motion of macroscopic objects.	between cause and correlation and make
data sets for consistency, and the use of models to generate and		claims about specific causes and effects.
analyze data.		
Analyze data using tools, technologies, and/or models (e.g.,		
computational, mathematical) in order to make valid and reliable		
scientific claims or determine an optimal design solution.		
Connections to Nature of Science		
Science Models, Laws, Mechanisms, and Theories Explain Natural		
Phenomena		
Theories and laws provide explanations in science.		
Laws are statements or descriptions of the relationships among		
observable phenomena.		
Connections to other DCIs in this grade-band: HS.PS3.C ; HS.ESS1.A ; HS.ESS1.C ; H.ESS2.C		
Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS3.C		
NJSLS- ELA: RST.11-12.1 , RST.11-12.7 , WHST.11-12.9		
NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3, HSA.SSE.A.1, HSA.SSE.B.3, HSA.CED.A.1, HSA.CED.A.2, HSA.CED.A.4, HSF-IF.C.7, HSS-IS.A.1		

BOE APPROVAL: 8/2018

HS_DS2_1: Apolyzo data t	5E Model
macroscopic object, its r	mass, and its acceleration.
	Hands On Activity:
	Newton's First Law Demonstration
	This demonstration will allow students to discover Newton's first law of motion. Students will observe a ball on a U-shaped ramp as the ramp is oriented differently. The purpose of this demonstration is to introduce students to Newton's laws of motion and will prepare students for learning about inertia as well as the other laws of motion.
	See the following video for additional explanation: <u>https://youtu.be/MxkLT-EpkqE</u>
Engage Anticipatory Set	<u>Newton's Second Law Demonstration:</u> This demonstration will allow students to discover Newton's Second Law of Motion. Students will observe the motion of two carts and observe how changing the mass of a cart affects its acceleration. The purpose of this demonstration is to allow students to understand the relationship between the force on an object, its mass, and the acceleration of the object.
	See the following video for additional explanation: https://youtu.be/J-PDPtoGmzg
	Frictional Demonstration: This demonstration will allow students to discover the concept of a frictional force and the different types of frictional forces. Teachers will place a block at the top of a wooden board. One side of the board will be lifted until a critical angle is reached so the block begins moving down the board. This shows the presence of two frictional forces: kinetic and static friction.
	The following video provides additional explanation: <u>https://youtu.be/nGrUuqJyOIk</u>
Exploration	Dynamics:

Cliffside Park Public Schools

GRADE: 9-12

Student Inquiry	Students will analyze Newton's Laws of Motion and the interaction between multiple forces acting on an object.		
	Applying Newton's Laws of Motion:		
	Students will analyze and apply Newton's Laws of Motion conducting the Friction Lab, Inertia Lab, and/or Hooke's Law Lab		
	NJCTL Lessons:		
	https://njctl.org/courses/science/algebra-based-physics/		
	Daily lesson breakdown, unit plans, and pacing guides available.		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	NJCTL Lessons:		
	https://njctl.org/courses/science/algebra-based-physics/		
Elaboration	NJCTL Lessons:		
Extension Activity	Virtual simulations, PHET Labs, and Lab activities are provided.		
	https://njctl.org/courses/science/algebra-based-physics/		
	NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content vocabulary.		
Evaluation	Assessment Task:		
Assessment Tasks	Students will be able to represent the unknown variables associated with forces acting on an object using algebraic equations and then		
	calculate these unknown variables using multiple equations.		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS			
HS-EISI-2 Engineering Design	weekleine het het elter it der en inter en eller mennen en der	and blacks allow and be applied allowed by	
HS-ETS1-2: Design a solution to a complex real-world	problem by breaking it down into smaller, more manageable	problems that can be solved through	
engineering.			
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-2			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing Solutions	ETS1.C: Optimizing the Design Solution		
Constructing explanations and designing solutions in	Criteria may need to be broken down into simpler ones that		
9–12 builds on K–8 experiences and progresses to	can be approached systematically, and decisions about the		
explanations and designs that are supported by	priority of certain criteria over others (trade-offs) may be		
multiple and independent student-generated sources	needed.		
of evidence consistent with scientific ideas, principles			
and theories.			
Design a solution to a complex real-world problem,			
based on scientific knowledge, student-generated			
sources of evidence, prioritized criteria, and tradeoff			
considerations.			
Connections to other DCIs in this grade-band: Physical Science: HS-PS1-6, HS-PS2-3			
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

NJSLS- ELA: N/A	
NJSLS- Math: MP.4	

PHYSICS			
HS-ETS1-3 Engineering Design			
HS-ETS1-3: Evaluate a solution to a complex real-v	vorld problem based on prioritized criteria and t	trade-offs that account for a range of constraints, including	
cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.			
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-3			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Designing	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and Applications	
<u>Solutions</u>	When evaluating solutions, it is important to	of Science	
Constructing explanations and designing solutions	take into account a range of constraints,	Influence of Science, Engineering, and Technology on	
in 9–12 builds on K–8 experiences and progresses	including cost, safety, reliability, and aesthetics,	Society and the Natural World	
to explanations and designs that are supported by	and to consider social, cultural, and	New technologies can have deep impacts on society and the	
multiple and independent student-generated	environmental impacts.	environment, including some that were not anticipated.	
sources of evidence consistent with scientific		Analysis of costs and benefits is a critical aspect of decisions	
ideas, principles and theories.		about technology.	
Evaluate a solution to a complex real-world			
problem, based on scientific knowledge, student-			
generated sources of evidence, prioritized criteria,			
and tradeoff considerations.			
Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B

NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9

NJSLS- Math: MP.2, MP.4

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Unit 3a: Overview		
Unit 3a: Uniform Circular Motion		
Content Area: Physics		
Pacing: 14 Instructional days		
Essential Question		
1. How do we use Free Body diagrams and Newton's Laws to solve circular motion problems?		
2. What are the applications of circular motion?		
3. How does apparent weight vary during circular motion?		
Student Learning Objectives (Performance Expectations)		
This essential knowledge does not produce a specific learning objective but serves as a foundation for other learning objectives in the course.		
Unit Summary		
How to describe the direction of the particle's velocity and acceleration at any instant during the motion. How to analyze situations in which an object moves with specified acceleration under the influence of one or more forces so they can determine the magnitude and direction of the net force, or of one of the forces that makes up the net force, in situations such as the following: (1) Motion in a horizontal circle (e.g., mass on a rotating merry-go-round, or car rounding a banked curve). (2) Motion in a vertical circle (e.g., mass swinging on the end of a string, cart rolling down a curved track, rider on a Ferris wheel). By the end of this unit, students will be able to: Learn various concepts and ideas related to circular motion.		
They will use the following equations in solving problems.		
o a= v2 /r o v = 2πr/T o T= 1/f o F = ma		
Technical Terms		
Centripetal acceleration, period, frequency, uniform circular motion, revolutions, horizontal circle vs. vertical circle.		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Formative & Summative Assessment Measures				
During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class work/homework questions and a response system.				
Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher price			y the teacher prior to the formal evaluations listed below.	
• Centripetal Acceleration Quiz • Uniform Circular Motion Test				
Other assessments on the NJCTL	website are optional and ca	an be used as needed.		
		Interdisciplinary Connections		
NJSLS- EI	Α	NJS	LS- Mathematics	
		Choose a level of accuracy appropriate to li (HS-PS2-4) HSN.Q.A.3	mitations on measurement when reporting quantities.	
		Interpret expressions that represent a quantity in terms of its context. (HS-PS2-4) HSA.SSE.A.1		
		Choose and produce an equivalent form of an expression to reveal and explain properties of the		
		quantity represented by the expression. (HS-PS2-4) HSA.SSE.B.3		
N/A		Reason abstractly and quantitatively. (HS-PS2-4) MP.2		
		Model with mathematics. (HS-PS2-4) MP.4		
		Use units as a way to understand problems and to guide the solution of multi-step problems;		
		choose and interpret units consistently in formulas; choose and interpret the scale and the origin in		
		graphs and data displays. (HS-PS2-4) HSN.Q.A.1		
		Define appropriate quantities for the purpose of descriptive modeling. (HS-PS2-4) HSN.Q.A.2		
Core Instructional Materials Can include: NJCTL Presentations/Classwork, Lab Materials, etc.				
Career ready Practices CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 9, CRP 11, CRP 12				
Technology Standards	8.1.12.A.1, 8.1.12.A.3, 8.1.12.E.1, 8.2.12.B.4, 8.2.12.C.5			
Modifications				
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Word walls	Word walls	Teacher tutoring	Curriculum compacting	
Formula Displays	Visual aides	Peer tutoring	Challenge assignments	

Cliffside Park Public Schools

GRADE: 9-12

Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers:	Heterogeneous Groups	Collaborative teamwork
Annotation guides	NEWSELA	Graphic organizers	Higher level questioning
Visual aides	Assistive technology	Extended time	Critical/Analytical thinking tasks
Modeling	Notes/summaries	Parent communication	
Spanish Articles: NEWSELA	Extended time	Modified assignments	
	Answer masking		
*All presentations and problems	Answer eliminator		
available entirely in Spanish.	Highlighter		
	Color contrast		

Cliffside Park Public Schools

BOE APPROVAL: 8/2018

PHYSICS				
Uniform Circular Motion				
Clarification Statement: Emphasis is on both quantitative and con	Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of Uniform Circular Motion.			
Assessment Boundary: Assessment is limited to vertical circular n	notion or horizontal circular motion.			
Evidence Statements: HS-PS2-4				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Using Mathematics and Computational Thinking	PS2.A: Forces and Motion	Patterns		
Mathematical and computational thinking at the 9–12 level builds	Newton's second law accurately predicts changes in	Different patterns may be observed at		
on K–8 and progresses to using algebraic thinking and analysis, a	the motion of macroscopic objects	each of the scales at which a system is		
range of linear and nonlinear functions including trigonometric	Newton's law of universal gravitation and Coulomb's	studied and can provide evidence for		
functions, exponentials and logarithms, and computational tools	law provide the mathematical models to describe	causality in explanations of		
for statistical analysis to analyze, represent, and model data.	and predict effects of gravitational and electrostatic	phenomena.		
Simple computational simulations are created and used based on	forces between distant objects			
mathematical models of basic assumptions.				
Use mathematical representations of phenomena to describe				
explanations.				
Connections to Nature of Science				
Science Models, Laws, Mechanisms, and Theories Explain Natural				
Phenomena				
Theories and laws provide explanations in science.				
Laws are statements or descriptions of the relationships among				
observable phenomena.				
Connections to other DCIs in this grade-band: HS.PS3.A ; HS.ESS1.	В			
Articulation of DCIs across grade-bands: MS.PS2.B ; MS.ESS1.B				
NJSLS- ELA: N/A				
NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3, HSA.SSE.A.1, HSA.SSE.B.3				

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	5E Model			
Uniform Circular Motio	n			
Engage	Rope Demonstration: This demonstration will allow students to discover how uniform circular motion arises when the velocity and acceleration components of an object's motion are at right angles. The goal is for students to recognize this by trying to move, while being held in by the centripetal force of a rope. Once the demonstration has concluded, teachers will ask discussion questions. Students should be writing down their observations and questions in a notebook See the following video for additional explanation: https://youtu.be/h5DuMGqyNA0			
Anticipatory Set	Bucket Demonstration: This demonstration will allow students to think about the difference between centripetal force and centrifugal force. The goal is for students to identify the components of force of a bucket of water, swung in a circle, such that the water does not fall out. Once the demonstration has concluded, teachers will ask discussion questions. Students should be writing down all their observations and questions in a notebook. See the following video for additional explanation: <u>https://youtu.be/h_f8SeoTKrl</u>			
Exploration Student Inquiry	<u>Uniform Circular Motion:</u> Students will apply previous knowledge of dynamics to analyze the dynamics of uniform circular motion. <u>NJCTL Lessons:</u> <u>https://njctl.org/courses/science/algebra-based-physics/</u> Daily lesson breakdown, unit plans, and pacing guides available.			
Explanation Concepts and Practices	In these lessons Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas) will provide a foundation to understand the following: PS2.B: Types of Interactions Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of gravitational and electrostatic forces between distant objects. Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through			

Cliffside Park Public Schools

GRADE: 9-12

	space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.			
	NJCTL Lessons: https://njctl.org/courses/science/algebra-based-physics/			
Elaboration Extension Activity	Finding g : Centripetal Acceleration Lab Centripetal Force: Mass of Stopper Lab NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content vocabulary.			
Evaluation	Assessment Task A: Using the two lab based activities above, teachers will evaluate the students' descriptions and predictions of			
Assessment Tasks	Uniform Circular Motion.			

Cliffside Park Public Schools

GRADE: 9-12

Unit 3b: Overview		
Unit 3b: Universal Gravitation		
Content Area: Physics		
Pacing: 15 Instructional days		
Essential Questions		
1. How are mass, separation, and gravitational force related?		
2. How does the mass of a planet relate to its gravitational force?		
3. How do we explain the apparent weightlessness of orbiting objects?		
Student Learning Objectives (Performance Expectations)		
HS-ESS1-4: Use mathematical or computational representations to predict the motion of orbiting objects in the solar system.		
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a		
macroscopic object, its mass, and its acceleration		
HS-PS2-4: Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the		
<u>system</u>		
Unit Summary		
By the end of this unit, students will know:		
Newton's Law of Universal Gravitation That the motion of an object in orbit is under the influence of gravitational forces		
By the end of this unit, students will be able to:		
Determine the force that one spherically symmetrical mass exerts on another. Determine the strength of the gravitational field at a specified point outside a spherically symmetrical mass.		
Recognize that the motion does not depend on the object's mass		
Describe qualitatively how the velocity, period of revolution, and centripetal acceleration depend upon the radius of the orbit		
Derive expressions for the velocity and period of revolution in such an orbit.		
Technical Terms		
Newton's Law of Universal Gravitation, Kepler's Law, period of revolution, centripetal acceleration, gravitational constant		
Formative & Summative Assessment Measures		
During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class		

sics Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

work/homework questions and ta response system.

Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher prior to the formal evaluations listed below.

-Gravitational Force Quiz

-Universal Gravitation Test

Other assessments on the NJCTL website are optional and can be used as needed.

Interdisciplinary Connections			
NJSLS- ELA		NJSLS- Mathematics	
N/A		Reason abstractly and quantitatively.(HS-ESS1-4) MP.2	
		Model with mathematics.(HS-ESS1-4) MP.4	
		Use units as a way to understand problems and to guide the solution of multi-step problems;	
		choose and interpret units consistently in formulas; choose and interpret the scale and the	
		origin in graphs and data displays.(HS-ESS1-4) HSN-Q.A.1	
		Define appropriate quantities for the purpose of descriptive modeling.(HS-ESS1-4) HSN-	
		Q.A.2	
		Choose a level of accuracy appropriate to limitations on measurement when reporting	
		quantities.(HS-ESS1-4) HSN-Q.A.3	
		Interpret expressions that represent a quantity in terms of its context.(HS-ESS1-4) HSA-	
		SSE.A.1	
		Create equations in two or more variables to represent relationships between quantities;	
		graph equations on coordinate axes with labels and scales.(HS-ESS1-4) HSA-CED.A.2	
		Rearrange formulas to highlight a quantity of interest, using the same reasoning as in solving	
		equations.(HS-ESS1-4) HSA-CED.A.4	
Core Instructional Materials	Can include: NJCTL Presentations/Classwork, Lab Materials, etc.		
Career ready Practices	CRP 1, CRP 2, CRP 4, CRP 5, CRP 8 , CRP 9, CRP 11, CRP 12		
Technology Standards	8.1.12.A.2, 8.2.12.B.1,8.2.12.B.4, 8.2.12.C.5		
Modifications			

Cliffside Park Public Schools

GRADE: 9-12

English Language Learners	Special Education	At-Risk	Gifted and Talented
Word walls	Word walls	Teacher tutoring	Curriculum compacting
Formula Displays	Visual aides	Peer tutoring	Challenge assignments
Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks
Modeling	Extended time	Parent communication	
Spanish Articles: NEWSELA	Answer masking	Modified assignments	
	Answer eliminator		
*All presentations and problems	Highlighter		
available entirely in Spanish.	Color contrast		

BOE APPROVAL: 8/2018

HS-PS2-4: Universal Gr	avitation
------------------------	-----------

HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic

forces between objects.

Clarification Statement: Emphasis is on both quantitative and conceptual descriptions of Uniform Circular Motion.

Assessment Boundary: Assessment is limited to vertical circular motion or horizontal circular motion.

Evidence Statements: HS-PS2-4

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Using Mathematics and Computational Thinking	PS2.A: Forces and Motion	Patterns	
Mathematical and computational thinking at the 9–12 level builds	Newton's second law accurately predicts changes in	Different patterns may be observed at	
on K–8 and progresses to using algebraic thinking and analysis, a	the motion of macroscopic objects	each of the scales at which a system is	
range of linear and nonlinear functions including trigonometric	Newton's law of universal gravitation and Coulomb's	studied and can provide evidence for	
functions, exponentials and logarithms, and computational tools	law provide the mathematical models to describe	causality in explanations of	
for statistical analysis to analyze, represent, and model data.	and predict effects of gravitational and electrostatic	phenomena.	
Simple computational simulations are created and used based on	forces between distant objects		
mathematical models of basic assumptions.			
Use mathematical representations of phenomena to describe			
explanations.			
Connections to Nature of Science			
Science Models, Laws, Mechanisms, and Theories Explain Natural			
Phenomena			
Theories and laws provide explanations in science.			
Laws are statements or descriptions of the relationships among			
observable phenomena.			
Connections to other DCIs in this grade-band: HS.PS3.A ; HS.ESS1.B			
Articulation of DCIs across grade-bands: MS.PS2.B ; MS.ESS1.B			
NJSLS- ELA: N/A			
NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3, HSA	.SSE.A.1, HSA.SSE.B.3		

BOE APPROVAL: 8/2018

PHYSICS

HS-PS2-1: Universal Gravitation

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscopic object, its mass, and its acceleration.

Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects in motion, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.

Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.

Evidence Statements: HS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect	
Analyzing data in 9–12 builds on K–8 and progresses to	Newton's second law accurately predicts	Empirical evidence is required to differentiate	
introducing more detailed statistical analysis, the comparison of	changes in the motion of macroscopic objects.	between cause and correlation and make	
data sets for consistency, and the use of models to generate and		claims about specific causes and effects.	
analyze data.			
Analyze data using tools, technologies, and/or models (e.g.,			
computational, mathematical) in order to make valid and reliable			
scientific claims or determine an optimal design solution.			
Connections to Nature of Science			
Science Models, Laws, Mechanisms, and Theories Explain Natural			
Phenomena			
Theories and laws provide explanations in science.			
Laws are statements or descriptions of the relationships among			
observable phenomena.			
Connections to other DCIs in this grade-band: HS.PS3.C ; HS.ESS1.A ; HS.ESS1.C ; H.ESS2.C			
Articulation of DCIs across grade-bands: MS.PS2.A ; MS.PS3.C			
NJSLS- ELA: RST.11-12.1 , RST.11-12.7 , WHST.11-12.9			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

NJSLS- Math: MP.2, MP.4, HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3, HSA.SSE.A.1, HSA.SSE.B.3, HSA.CED.A.1, HSA.CED.A.2, HSA.CED.A.4, HSF-IF.C.7, HSS-IS.A.1

	PHYSICS			
HS-ESS1-4: Universal Gravitation				
HS-ESS1-4: Use mathematical or computational rep	resentations to predict the motion of orbiting object	ts in the solar system.		
Clarification Statement: Emphasis is on Newtonian g	ravitational laws governing orbital motions, which a	pply to human-made satellites as well as planets and		
moons.				
Assessment Boundary: Mathematical representation	ns for the gravitational attraction of bodies and Keple	er's Laws of orbital motions should not deal with more		
than two bodies, nor involve calculus.				
Evidence Statements: HS-ESS1-4				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Using Mathematical and Computational Thinking	ESS1.B: Earth and the Solar System	Scale, Proportion, and Quantity		
Mathematical and computational thinking in 9–12	Kepler's laws describe common features of the	Algebraic thinking is used to examine scientific data		
builds on K–8 experiences and progresses to using	motions of orbiting objects, including their elliptical	and predict the effect of a change in one variable on		
algebraic thinking and analysis, a range of linear and	paths around the sun. Orbits may change due to the	another (e.g., linear growth vs. exponential growth).		
nonlinear functions including trigonometric	gravitational effects from, or collisions with, other	Connections to Engineering, Technology, and		
functions, exponentials and logarithms, and	objects in the solar system.	Applications of Science		
computational tools for statistical analysis to		Interdependence of Science, Engineering, and		
analyze, represent, and model data. Simple		<u>Technology</u>		
computational simulations are created and used		Science and engineering complement each other in th		
based on mathematical models of basic		cycle known as research and development (R&D).		
assumptions.		Many R&D projects may involve scientists, engineers,		
Use mathematical or computational representations		and others with wide ranges of expertise.		
of phenomena to describe explanations.				
Connections to other DCIs in this grade-band: HS.PS2.B				
Articulation of DCIs across grade-bands: MS.PS2.A ;	MS.PS2.B ; MS.ESS1.A ; MS.ESS1.B			
NJSLS- ELA: N/A				
BOE adopted 5/2017				

NJSLS- Math: MP.2, MP.4, HSN-Q.A.1, HSN-Q.A.2, HSN-Q.A.3, HSA-SSE.A.1, HSA-CED.A.2, HSA-CED.A.4

	5E Model		
HS-ESS1-4: Use mathe	matical or computational representations to predict the motion of orbiting objects in the solar system		
HS-PS2-1: Analyze dat	a to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a		
macroscopic object, it	s mass, and its acceleration.		
HS-PS2-4: Use mather	natical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the gravitational and electrostatic		
forces between object	ts.		
	Baseball Demonstration:		
	This demonstration will allow students to apply their knowledge of gravity in a friendly competition. Students will compete to see who		
Engage	can throw a baseball the farthest in a horizontal direction. Once the competition has concluded, teachers will ask students questions		
Anticipatory Set regarding the motion of the ball due to the force of gravity. The goal of this lab is for students to understand the topi			
	gravitational fields through teacher guided questions.		
	See the following video for additional explanation: <u>https://youtu.be/G4mXQxl_19E</u>		
	<u>Universal Gravitation:</u> Students will build upon Uniform Circular Mation concents and enclure Neuton's Low of Universal Crevitation		
	Students will build upon Uniform Circular Motion concepts and analyze Newton's Law of Universal Gravitation.		
	Applying Newton's Law of Universal Gravitation:		
Exploration	Students will analyze and apply Newton's Law of Universal Gravitation by conducting the Force of Gravity Lab.		
Student Inquiry			
	NJCTL Lessons:		
	https://njctl.org/courses/science/algebra-based-physics/		
	Daily lesson breakdown, unit plans, and pacing guides available.		

Cliffside Park Public Schools

GRADE: 9-12

	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the
Explanation	net force on a macroscopic object, its mass, and its acceleration
Concepts and Practices	ESS1.B: Earth and the Solar System
	Kepler's laws describe common features of the motions of orbiting objects, including their elliptical paths around the sun. Orbits may
	change due to the gravitational effects from, or collisions with, other objects in the solar system.
	HS-PS2-4: Use mathematical representations of Newton's Law of Gravitation and Coulomb's Law to describe and predict the
	gravitational and electrostatic forces between objects.
	NJCTL Lessons:
	https://njctl.org/courses/science/algebra-based-physics/
	Mass of Jupiter Simulation Lab
Elaboration	NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content
Extension Activity	vocabulary.
	Assessment Task A: In the activities above, students will use Newton's Law of Universal Gravitation and apply it to a multitude of
Evaluation	phenomena.
Assessment Tasks	

Cliffside Park Public Schools

GRADE: 9-12

Unit 4: Overview			
Unit 4: Energy			
Content Area: Physics			
Pacing: 27 Instructional days			
Essential Question			
1. How do we determine the work done on a physical system when the net force acting on it and its displacement are known?			
2. How do we use the work/energy theorem to determine the motion of an object?			
3. How do we apply energy conservation to determine the position and motion of an object?			
Student Learning Objectives (Performance Expectations)			
HS-PS3-2: Develop and use models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the			
motions of particles (objects) and energy associated with the relative positions of particles (objects).			
HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other			
component(s) and energy flows in and out of the system are known.			
HS-PS3-3: Design, build, and refine a device that works within given constraints to convert one form of energy into another form of energy.			
HS-ETS1-1: Analyze a major global challenge to specify qualitative and quantitative criteria and constraints for solutions that account for societal needs and			
wants.			
HS-ETS1-2: Design a solution to a complex real-world problem by breaking it down into smaller, more manageable problems that can be solved through			
engineering.			
HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including			
cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.			
HS-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints on			
interactions within and between systems relevant to the problem.			
Unit Summary			
By the end of this unit, students will know: Definition of work, including when it is positive, negative, or zero. How to apply the work-energy theorem. The concept of a conservative force. The concept of potential energy.			
BOE adopted 5/2017			

BOE APPROVAL: 8/2018

The concepts of mechanical energy and of total energy.

Conservation of energy.

The definition of power.

By the end of this unit, students will be able to:

Calculate the work done by a specified constant force on an object that undergoes a specified displacement.

Relate the work done by a force to the area under a graph of force as a function of position, and calculate this work in the case where the force is a linear function of position.

Use the scalar product operation to calculate the work performed by a specified constant force F on an object that undergoes a displacement in a plane. Calculate the change in kinetic energy or speed that results from performing a specified amount of work on an object.

Calculate the work performed by the net force, or by each of the forces that make up the net force, on an object that undergoes a specified change in speed or kinetic energy.

Apply the theorem to determine the change in an object's kinetic energy and speed which results from the application of specified forces, or to determine the force that is required in order to bring an object to rest in a specified distance.

Describe examples of conservative forces and non-conservative forces.

Write an expression for the force exerted by an ideal spring and for the potential energy of a stretched or compressed spring.

Calculate the potential energy of one or more objects in a uniform gravitational field.

State and apply the relation between the work performed on an object by non-conservative forces and the change in an object's mechanical energy.

Describe and identify situations in which mechanical energy is converted to other forms of energy.

Analyze situations in which an object's mechanical energy is changed by friction or by a specified externally applied force.

Identify situations in which mechanical energy is or is not conserved.

Apply conservation of energy in analyzing the motion of systems of connected objects, such as an Atwood's machine.

Apply conservation of energy in analyzing the motion of objects that move under the influence of springs.

Recognize and solve problems that call for application both of conservation of energy and Newton's Laws.

Calculate the power required to maintain the motion of an object with constant acceleration (e.g., to move an object along a level surface, to raise an object at a constant rate, or to overcome friction for an object that is moving at a constant speed).

Calculate the work performed by a force that supplies constant power, or the average power supplied by a force that performs a specified amount of work.

Technical Terms

Energy, conservation of energy , energy transfer, elastic potential energy, gravitational potential energy, kinetic energy, thermal energy, macroscopic scale, computational model, radiation, Rube Goldberg machines, quantitative property, quantifiable

Formative & Summative Assessment Measures

During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

work/homework questions and a response system. Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher prior to the formal evaluations listed below.

-Work and Energy Quiz

-Power Quiz

-Energy Test

Other assessments on the NJCTL website are optional and can be used as needed.

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science and technical texts,	Reason abstractly and quantitatively. (HS-ETS1-1),(HS-ETS1-3),(HS-ETS1-4)		
attending to important distinctions the author makes and to any gaps or	MP.2		
inconsistencies in the account.(HS-PS1-3) RST.11-12.1	Model with mathematics. (HS-ETS1-1),(HS-ETS1-2),(HS-ETS1-3),(HS-ETS1-		
Write informative/explanatory texts, including the narration of historical events,	4) MP.4		
scientific procedures/ experiments, or technical processes.(HS-PS1-2) WHST.9-12.2	Use units as a way to understand problems and to guide the solution of		
Develop and strengthen writing as needed by planning, revising, editing, rewriting, or	multi-step problems; choose and interpret units consistently in formulas;		
trying a new approach, focusing on addressing what is most significant for a specific	choose and interpret the scale and the origin in graphs and data		
purpose and audience.(HS-PS1-2),(HS-ETS1-3) WHST.9-12.5	displays.(HS-PS1-2),(HS-PS1-3) HSN-Q.A.1		
Conduct short as well as more sustained research projects to answer a question			
(including a self-generated question) or solve a problem; narrow or broaden the			
inquiry when appropriate; synthesize multiple sources on the subject, demonstrating			
understanding of the subject under investigation.(HS-PS1-3),(HS-ETS1-1),(HS-ETS1-3)			
WHST.9-12.7			
Gather relevant information from multiple authoritative print and digital sources,			
using advanced searches effectively; assess the strengths and limitations of each			
source in terms of the specific task, purpose, and audience; integrate information			
into the text selectively to maintain the flow of ideas, avoiding plagiarism and over-			
reliance on any one source and following a standard format for citation.(HS-PS1-			
3),(HS-ETS1-3),(HS-ETS1-1),(HS-ETS1-3) WHST.11-12.8			
Draw evidence from informational texts to support analysis, reflection, and			
research.(HS-PS1-3),(HS-ETS1-1),(HS-ETS1-3) WHST.9-12.9			
Make strategic use of digital media (e.g., textual, graphical, audio, visual, and			

Cliffside Park Public Schools

GRADE: 9-12

interactive elements) in presentat	ions to enhance understanding of findings,			
reasoning, and evidence and to ac	ld interest. (HS-PS1-4) SL.11-12.5			
Core Instructional Materials	Can include: NJCTL Presentations/Classwork, Lab Materials, etc.			
Career ready Practices	CRP 1, CRP 2, CRP 4, CRP 6, CRP 7, CRP 9, CRP 11, C	CRP 1, CRP 2, CRP 4, CRP 6, CRP 7, CRP 9, CRP 11, CRP 12		
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8.1.12.E.1			
	Modificatio	ns		
English Language Learners	Special Education	At-Risk	Gifted and Talented	
Word walls	Word walls	Teacher tutoring	Curriculum compacting	
Formula Displays	Visual aides	Peer tutoring	Challenge assignments	
Bilingual translation	Multimedia	Study guides	Tiered activities	
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork	
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning	
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks	
Modeling	Extended time	Parent communication		
Spanish Articles: NEWSELA	Answer masking	Modified assignments		
	Answer eliminator			
*All presentations and problems	Highlighter			
available entirely in Spanish.	Color contrast			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS			
HS-PS3-2: Energy			
HS-PS3-2: Develop and use models to illustrate	e that energy at the macroscopic scale can be accounted for as a con	nbination of energy associated with the	
motions of particles (objects) and energy asso	ciated with the relative positions of particles (objects).		
Clarification Statement: Examples of phenome	na at the macroscopic scale could include the conversion of kinetic er	nergy to thermal energy, the energy stored	
due to position of an object above the earth, ar	nd the energy stored between two electrically-charged plates. Example	les of models could include diagrams,	
drawings, descriptions, and computer simulatio	ns.		
Assessment Boundary: N/A			
Evidence Statements: HS-PS3-2			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Developing and Using Models	PS3.A: Definitions of Energy	Energy and Matter	
Modeling in 9–12 builds on K–8 and progresses	Energy is a quantitative property of a system that depends on the	Energy cannot be created or destroyed—	
to using, synthesizing, and developing models	motion and interactions of matter and radiation within that system.	only moves between one place and	
to predict and show relationships among	That there is a single quantity called energy is due to the fact that a	another place, between objects and/or	
variables between systems and their	system's total energy is conserved, even as, within the system,	fields, or between systems.	
components in the natural and designed	energy is continually transferred from one object to another and		
worlds.	between its various possible forms.		
Develop and use a model based on evidence to	At the macroscopic scale, energy manifests itself in multiple ways,		
illustrate the relationships between systems or	such as in motion, sound, light, and thermal energy.		
between components of a system.	These relationships are better understood at the microscopic scale,		
	at which all of the different manifestations of energy can be		
	modeled as a combination of energy associated with the motion of		
	particles and energy associated with the configuration (relative		
	position of the particles). In some cases the relative position energy		
	can be thought of as stored in fields (which mediate interactions		
	between particles). This last concept includes radiation, a		
	phenomenon in which energy stored in fields moves across space.		
Connections to other DCIs in this grade-band: HS.PS1.A ; HS.PS1.B ; HS.PS2.B			

BOE APPROVAL: 8/2018

Articulation of DCIs across grade-bands: MS.PS1.A ; MS.PS2.B ; MS.PS3.A ; MS.PS3.C		
NJSLS- ELA: SL.11-12.5		
NJSLS- Math: MP.2, MP.4	4	
	5E Model	
HS-PS3-2: Develop and u	se models to illustrate that energy at the macroscopic scale can be accounted for as a combination of energy associated with the	
motions of particles (obj	ects) and energy associated with the relative positions of particles (objects).	
Engage	Video: Energy Lost When a Ball Bounces (Can be done as classroom demonstration)	
Anticipatory Set	https://www.youtube.com/watch?v=ZSOxVwTv58Q	
	Skatepark Energy	
	Students learn the concepts of kinetic and potential energy as they explore a skateboard simulation.	
	http://betterlesson.com/lesson/638233/skate-park-energy	
	Skatepark Energy Revisited	
	Students determine how friction and the shape of the ramp impact the transformation of potential into kinetic energy.	
Exploration	http://betterlesson.com/lesson/638235/skate-park-energy-revisited	
Student Inquiry		
NJCTL Lessons:		
https://njcti.org/courses/science/algebra-based-physics/		
Unit plans, daily activities, and pacing guides available.		
	in these lessons	
	reachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.	
F la atta	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.	
Explanation	Topics to be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):	
concepts and Practices	PSS.A. Definitions of Energy Energy is a quantitative preparty of a system that depends on the motion and interactions of matter and rediction within that system	
	Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system.	
	inal there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system,	
	energy is continually transferred from one object to another and between its various possible forms.	

	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.
	These relationships are better understood at the microscopic scale, at which all of the different manifestations of energy can be
	modeled as a combination of energy associated with the motion of particles and energy associated with the configuration (relative
	position of the particles). In some cases the relative position energy can be thought of as stored in fields (which mediate interactions
	between particles). This last concept includes radiation, a phenomenon in which energy stored in fields moves across space.
	NJCTL Lessons:
	https://njctl.org/courses/science/algebra-based-physics/
	Daily lesson breakdown, unit plans, and pacing guides available.
	Swinging Pendulum
Elaboration	https://www.teachengineering.org/Activities/view/cub_energy_lesson03_activity2
Extension Activity	NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content
	vocabulary.
	Assessment Task A: Energy Skate Dark, Dar Crank Madel
	Assessment Task A: Energy Skate Park- Bar Graph Model
Evaluation	http://betterlesson.com/lesson/resource/3218871/energy-skate-park?from=resource_image
Assessment Tasks	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS

HS-PS3-1: Energy

HS-PS3-1: Create a computational model to calculate the change in the energy of one component in a system when the change in energy of the other

component(s) and energy flows in and out of the system are known.

Clarification Statement: Emphasis is on explaining the meaning of mathematical expressions used in the model.

Assessment Boundary: Assessment is limited to basic algebraic expressions or computations; to systems of two or three components; and to thermal energy, kinetic energy, and/or the energies in gravitational, magnetic, or electric fields.

Evidence Statements: HS-PS3-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Using Mathematics and Computational	PS3.A: Definitions of Energy	Systems and System Models
Thinking	Energy is a quantitative property of a system that depends on	Models can be used to predict the behavior of a
Mathematical and computational thinking at	the motion and interactions of matter and radiation within	system, but these predictions have limited
the 9–12 level builds on K–8 and progresses	that system. That there is a single quantity called energy is due	precision and reliability due to the assumptions
to using algebraic thinking and analysis, a	to the fact that a system's total energy is conserved, even as,	and approximations inherent in models.
range of linear and nonlinear functions	within the system, energy is continually transferred from one	Connections to Nature of Science
including trigonometric functions,	object to another and between its various possible forms.	Scientific Knowledge Assumes an Order and
exponentials and logarithms, and	PS3.B: Conservation of Energy and Energy Transfer	Consistency in Natural Systems
computational tools for statistical analysis to	Conservation of energy means that the total change of energy	Science assumes the universe is a vast single
analyze, represent, and model data. Simple	in any system is always equal to the total energy transferred	system in which basic laws are consistent.
computational simulations are created and	into or out of the system.	
used based on mathematical models of basic	Energy cannot be created or destroyed, but it can be	
assumptions.	transported from one place to another and transferred	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Create a computational mod	lel or simulation	between systems.		
of a phenomenon, designed	device, process,	Mathematical expressions, which quantify how the stored		
or system.		energy in a system depends on its configuration (e.g. relative		
		positions of charged particles, compression of a spring) and		
		how kinetic energy depends on mass and speed, allow the		
		concept of conservation of energy to be used to predict and		
		describe system behavior.		
		The availability of energy limits what can occur in any system.		
Connections to other DCIs in	n this grade-band	: HS.PS1.B ; HS.LS2.B ; HS.ESS2.A		
Articulation of DCIs across g	rade-bands: MS.I	PS3.A ; MS.PS3.B ;MS.ESS2.A		
NJSLS- ELA: SL.11-12.5				
NJSLS- Math: MP.2, MP.4, H	ISN.Q.A.1, HSN.Q	.A.2, HSN.Q.A.3		
		5E Model		
HS-PS3-1: Create a computa	tional model to c	alculate the change in the energy of one component in a syster	m when the change in energy of the other	
component(s) and energy fl	ows in and out of	the system are known.		
Engage	Illistic Pendulum F	Physics		
Anticipatory Set	https://www.youtube.com/watch?v=I87Dr2IJEOk			
Th	e Springy Pen Lab	<u>1</u>		
St	udents will be abl	e to prove conservation of energy in a pen's spring.		
ht	http://betterlesson.com/lesson/634088/the-springy-pen-lab			
Th	e Conservation of	Energy Pendulum		
Th Exploration	The purpose of this experiment is to measure the potential energy and the kinetic energy of a mechanical system and to quantitatively			
Student Inquiry compare the two forms of mechanical energy to determine if the total mechanical energy is conserved.				
ht	tp://www.austinc	c.edu/mmcgraw/Labs_1401/8c-Con%20of%20Energy-Pendulum	n-RGC-1-15-09.pdf	
Ra	mp and Review			
In	this hands-on act	ivity—rolling a ball down an incline and having it collide into a cu	up—the concepts of mechanical energy, work and	
pc	power, momentum, and friction are all demonstrated. During the activity, students take measurements and use equations that			
de	escribe these ener	gy of motion concepts to calculate unknown variables and review	w the relationships between these concepts.	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	https://www.teachengineering.org/Activities/view/cub_energy_lesson05_activity2		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.A: Definitions of Energy		
	Energy is a quantitative property of a system that depends on the motion and interactions of matter and radiation within that system.		
	That there is a single quantity called energy is due to the fact that a system's total energy is conserved, even as, within the system,		
Explanation	energy is continually transferred from one object to another and between its various possible forms.		
Concepts and Practices	PS3.B: Conservation of Energy and Energy Transfer		
	Conservation of energy means that the total change of energy in any system is always equal to the total energy transferred into or out		
	of the system.		
	Energy cannot be created or destroyed, but it can be transported from one place to another and transferred between systems.		
	Mathematical expressions, which quantify how the stored energy in a system depends on its configuration (e.g. relative positions of		
	charged particles, compression of a spring) and how kinetic energy depends on mass and speed, allow the concept of conservation of		
	energy to be used to predict and describe system behavior.		
	The availability of energy limits what can occur in any system.		
	Power Lab:		
	Students will be running up a set of stairs as fast as they can. Power is defined as the amount of work done divided by the amount of		
	time it takes to do the work. Students will use their knowledge of this to figure out how powerful their representative is.		
	https://njctl.org/courses/science/algebra-based-physics/energy/attachments/power-lab/		
Elaboration			
Extension Activity	Marshmallow Launcher Lab		
	In this lab, students will bend a plastic spoon and release it to to launch a marshmallow (or any other small object) into the air. A bent		
	plastic spoon stores EPE. Releasing the spoon converts the spoons EPE into KE giving the object an initial velocity (v) and at the top of		
	its trajectory (h); the KE is converted into GPE.		
	https://njctl.org/courses/science/algebra-based-physics/energy/attachments/marshmallow-launcher-lab-teacher-notes/		
Evaluation	Students use the computational model to calculate the changes in the energy of one component of the system when changes in the		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Assessment Tasks	energy of the other components and the energy flows are known.
	Assessment Task A: Springy Pen Lab
	Computational models
	Assessment Task B: The Conservation of Energy Pendulum
	Data analysis portion of lab report to create computational models
	Assessment Task C: Ramp and Review Worksheet
	http://content.teachengineering.org/content/cub_/activities/cub_energy/cub_energy_lesson05_activity2_worksheet.pdf
	Assessment Task D: Marshmallow Launcher Lab
	Conservation of Energy formulas properly calculated

PHYSICS				
HS-PS3-3: Energy				
HS-PS3-3: Design, build, and refine a device the second second second second second second second second second	nat works within given constraints to convert one form	of energy into another form of energy.		
Clarification Statement: Emphasis is on both o	qualitative and quantitative evaluations of devices. Examp	oles of devices could include Rube Goldberg devices,		
wind turbines, solar cells, solar ovens, and gen	erators. Examples of constraints could include use of ren	ewable energy forms and efficiency.		
Assessment Boundary: Assessment for quanti	tative evaluations is limited to total output for a given inp	out. Assessment is limited to devices constructed with		
materials provided to students.				
Evidence Statements: HS-PS3-3				
Science & Engineering Practices	Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts			
Constructing Explanations and Designing	PS3.A: Definitions of Energy	Energy and Matter		
<u>Solutions</u>	At the macroscopic scale, energy manifests itself in	Changes of energy and matter in a system can be		
Constructing explanations and designing	multiple ways, such as in motion, sound, light, and	described in terms of energy and matter flows into, out		
solutions in 9–12 builds on K–8 experiences	thermal energy.	of, and within that system.		
and progresses to explanations and designs	PS3.D: Energy in Chemical Processes	Connections to Engineering, Technology, and		
that are supported by multiple and	Although energy cannot be destroyed, it can be	Applications of Science		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

independent student-gene	erated sources of	converted to less useful forms—for example, to thermal	Influence of Science, Engineering and Technology on		
evidence consistent with s	cientific ideas,	energy in the surrounding environment.	Society and the Natural World		
principles, and theories.		ETS1.A: Defining and Delimiting an Engineering	Modern civilization depends on major technological		
Design, evaluate, and/or re	efine a solution to a	Problem	systems. Engineers continuously modify these		
complex real-world proble	em, based on	Criteria and constraints also include satisfying any	technological systems by applying scientific knowledge		
scientific knowledge, stude	ent-generated	requirements set by society, such as taking issues of risk	and engineering design practices to increase benefits		
sources of evidence, priori	itized criteria, and	mitigation into account, and they should be quantified	while decreasing costs and risks.		
tradeoff considerations.		to the extent possible and stated in such a way that one			
		can tell if a given design meets them. (secondary)			
Connections to other DCIs	s in this grade-band:	HS.ESS3.A			
Articulation of DCIs across	s grade-bands: MS.P	S3.A ; MS.PS3.B ; MS.ESS2.A			
NJSLS- ELA: WHST.9-12.7					
NJSLS- Math: MP.2, MP.4,	, HSN.Q.A.1, HSN.Q./	A.2, HSN.Q.A.3			
		5E Model			
HS-PS3-3: Design, build,	and refine a device	that works within given constraints to convert one for	orm of energy into another form of energy.		
	Roller Coaster Physi	<u>cs</u>			
Engage	https://www.youtube.com/watch?v=-dpBVtAbKJU				
Anticipatory Set	Kingda Ka- Front Row				
	https://www.youtube.com/watch?v=HN8nv4tVFuA				
	Dellar Ceester Desia	no. Dou 1			
	Koller Coaster Desig	<u>(I: Day 1</u>	by concernation of energy to calculate the value ities at		
	Students design their own roller coasters, calculate potential energy and apply conservation of energy to calculate the velocities at				
	key points of the ride.				
Exploration	nttp://betteriesson.com/iesson/638238/roller-coaster-design-day-1				
Student Inquiry	Koller Coaster Design: Day 2 Studente design their gave roller exectors and calculate immertant execute filler desitive rollerities and calculate immertant				
	students design their own roller coasters and calculate important aspects of the ride like velocities, work and power of the motor,				
	and braking force.				
	nttp://betteriesson.com/iesson/639206/roller-coaster-design-day-2				

	https://www.teachingchannel.org/videos/rube-goldberg-contraptions		
	Introduction Video:		
	https://www.youtube.com/watch?v=ieQSiDnOhzY		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.A: Definitions of Energy		
Explanation	At the macroscopic scale, energy manifests itself in multiple ways, such as in motion, sound, light, and thermal energy.		
Concepts and Practices	PS3.D: Energy in Chemical Processes		
	Although energy cannot be destroyed, it can be converted to less useful forms—for example, to thermal energy in the surrounding		
	environment.		
	ETS1.A: Defining and Delimiting an Engineering Problem- Criteria and constraints also include satisfying any requirements set by		
	society, such as taking issues of risk mitigation into account, and they should be quantified to the extent possible and stated in such a		
	way that one can tell if a given design meets them. (secondary)		
Flaboration	Related Activities:		
Extension Activity	http://www.ck12.org/ngss/high-school-physical-sciences/energy/		
	Assessment Task A: Roller Coaster		
	When creating their models, students should describe and quantify (when appropriate) prioritized criteria and constraints for the		
Evaluation	design of the device, along with the tradeoffs implicit in these design solutions.		
Assessment Tasks	3D Model Rubric		
	Rube Goldberg Contraption		
	Evaluate student design using the 3D model rubric.		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS			
HS-ETS1-1 Engineering Design			
HS-ETS1-1: Analyze a major global challenge to	o specify qualitative and quantitative criteria and const	raints for solutions that account for societal needs and	
wants.			
Clarification Statement: N/A			
Assessment Boundary: N/A			
Evidence Statements: HS-ETS1-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Asking Questions and Defining Problems	ETS1.A: Defining and Delimiting Engineering Problems	Connections to Engineering, Technology, and	
Asking questions and defining problems in 9–	Criteria and constraints also include satisfying any	Applications of Science	
12 builds on K–8 experiences and progresses	requirements set by society, such as taking issues of	Influence of Science, Engineering, and Technology on	
to formulating, refining, and evaluating	risk mitigation into account, and they should be	Society and the Natural World	
empirically testable questions and design	quantified to the extent possible and stated in such a	New technologies can have deep impacts on society and	

BOE APPROVAL: 8/2018

SUBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

GRADE: 9-12

problems using models and simulations.	way that one can tell if a given design meets them.	the environment, including some that were not		
Analyze complex real-world problems by	Humanity faces major global challenges today, such as	anticipated. Analysis of costs and benefits is a critical		
specifying criteria and constraints for	the need for supplies of clean water and food or for	aspect of decisions about technology.		
successful solutions.	energy sources that minimize pollution, which can be			
	addressed through engineering. These global			
	challenges also may have manifestations in local			
	communities.			
Connections to other DCIs in this grade-band: Physical Science: HS-PS2-3, HS-PS3-3				
Articulation of DCIs across grade-bands: MS.ETS1.A				
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9				
NJSLS- Math: MP.2, MP.4				

Cliffside Park Public Schools

GRADE: 9-12

PHYSICS		
HS-ETS1-2 Engineering Design		
HS-ETS1-2: Design a solution to a complex real-world	problem by breaking it down into smaller, more manageable pr	roblems that can be solved through
engineering.		
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-2		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing Solutions Constructing explanations and designing solutions in 9–12 builds on K–8 experiences and progresses to explanations and designs that are supported by multiple and independent student-generated sources of evidence consistent with scientific ideas, principles and theories. Design a solution to a complex real-world problem, based on scientific knowledge, student-generated sources of evidence, prioritized criteria, and tradeoff	ETS1.C: Optimizing the Design Solution Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of certain criteria over others (trade-offs) may be needed.	
considerations. Connections to other DCIs in this grade-band: Physica Articulation of DCIs across grade-bands: MS.ETS1.A ; NJSLS- ELA: N/A	al Science: HS-PS1-6, HS-PS2-3 MS.ETS1.B ; MS.ETS1.C	
NJSLS- Math: MP.4		

Cliffside Park Public Schools

GRADE: 9-12

PHYSICS				
HS-ETS1-3 Engineering Design				
HS-ETS1-3: Evaluate a solution to a complex real-world problem based on prioritized criteria and trade-offs that account for a range of constraints, including				
cost, safety, reliability, and aesthetics as well as p	ossible social, cultural, and environmental impa	<u>cts.</u>		
Clarification Statement: N/A				
Assessment Boundary: N/A				
Evidence Statements: HS-ETS1-3				
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts		
Constructing Explanations and Designing	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and Applications		
<u>Solutions</u>	When evaluating solutions, it is important to	of Science		
Constructing explanations and designing solutions	take into account a range of constraints,	Influence of Science, Engineering, and Technology on		
in 9–12 builds on K–8 experiences and progresses	including cost, safety, reliability, and aesthetics,	Society and the Natural World		
to explanations and designs that are supported by	and to consider social, cultural, and	New technologies can have deep impacts on society and the		
multiple and independent student-generated	environmental impacts.	environment, including some that were not anticipated.		
sources of evidence consistent with scientific		Analysis of costs and benefits is a critical aspect of decisions		
ideas, principles and theories.		about technology.		
Evaluate a solution to a complex real-world				
problem, based on scientific knowledge, student-				
generated sources of evidence, prioritized criteria,				
and tradeoff considerations.				
Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6				
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B				
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.9				
NJSLS- Math: MP.2, MP.4				

Cliffside Park Public Schools

GRADE: 9-12

PHYSICS					
HS-ETS1-4 Engineering Design					
HS-ETS1-4: Use a computer simulation to model the impact of proposed solutions to a complex real-world problem with numerous criteria and constraints					
on interactions within and between systems relevant to	on interactions within and between systems relevant to the problem.				
Clarification Statement: N/A					
Assessment Boundary: N/A					
Evidence Statements: HS-ETS1-4					
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts			
Using Mathematics and Computational Thinking	ETS1.B: Developing Possible Solutions	Systems and Systems Models			
Mathematical and computational thinking in 9-12 builds	Both physical models and computers can be	Systems and System Models Models (e.g., physical,			
on K-8 experiences and progresses to using algebraic	used in various ways to aid in the engineering	mathematical, computer models) can be used to			
thinking and analysis, a range of linear and nonlinear	design process. Computers are useful for a	simulate systems and interactions—including energy,			
functions including trigonometric functions,	variety of purposes, such as running	matter, and information flows— within and between			
exponentials and logarithms, and computational tools	simulations to test different ways of solving a	systems at different scales.			
for statistical analysis to analyze, represent, and model	problem or to see which one is most efficient				
data. Simple computational simulations are created and	or economical; and in making a persuasive				
used based on mathematical models of basic	presentation to a client about how a given				
assumptions.	design will meet his or her needs.				
Use mathematical models and/or computer simulations					
to predict the effects of a design solution on systems					
and/or the interactions between systems.					
Connections to other DCIs in this grade-band: Earth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2-7, HS-LS4-6					
Articulation of DCIs across grade-bands: MS.ETS1.A ; MS.ETS1.B ; MS.ETS1.C					
NJSLS- ELA: N/A					
NJSLS- Math: MP.2, MP.4					

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Unit 5: Overview
Unit 5:Momentum
Content Area: Physics
Pacing: 16 Instructional days
Essential Question
1. How do we determine the impulse on a physical system when the forces on the system, and the time interval these forces act, are known?
2. What is the difference between elastic and inelastic collisions?
Student Learning Objectives (Performance Expectations)
HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a macroscop
object, its mass, and its acceleration.
HS-PS2-2. Use mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no net force on the
system.
HS-PS2-3. Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision.
Unit Summary
By the end of this unit, students will know: · relationship between certain physics quantities related to impulse and momentum. · fundamental law of physics -conservation of momentum.
By the end of this unit, students will know: · use the following equations in solving problems: P = mv (Momentum) I = Δp = mv (Impulse)
Technical Terms
Momentum, Momentum Change and Impulse, Momentum of a System of Objects, Conservation of Momentum, Perfectly Inelastic Collisions & Explosions, Elastic

BOE APPROVAL: 8/2018

Collisions.

Summative & Formative Assessment Measures

During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class work/homework questions and the SMART Response system. Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher prior to the formal evaluations listed below.

- Momentum Quiz
- Conservation of Momentum Quiz
- Impulse Quiz
- Momentum Test

Other assessments on the NJCTL website are optional and can be used as needed.

Interdisciplinary Connections			
NJSLS- ELA	NJSLS- Mathematics		
Cite specific textual evidence to support analysis of science and technical texts,	Reason abstractly and quantitatively. (HS-PS2-1), (HS-PS2-2),(HS-PS2-3)		
attending to important distinctions the author makes and to any gaps or	MP.2		
inconsistencies in the account. (HS-PS2-1), (HS-PS2-2),(HS-PS2-3) RST.11-12.1	Model with mathematics.(HS-PS2-1), (HS-PS2-2),(HS-PS2-3) MP.4		
Determine the central ideas or conclusions of a text; summarize complex concepts,	Use units as a way to understand problems and to guide the solution of multi		
processes, or information presented in a text by paraphrasing them in simpler but	step problems; choose and interpret units consistently in formulas; choose		
still accurate terms. (HS-PS2-1), (HS-PS2-2),(HS-PS2-3) RST.11-12.2	and interpret the scale and the origin in graphs and data displays. (HS-PS2-		
Evaluate the hypotheses, data, analysis, and conclusions in a science or technical	1), (HS-PS2-2),(HS-PS2-3)		
text, verifying the data when possible and corroborating or challenging conclusions	HSN-Q.A.1		
with other sources of information. (HS-PS2-1), (HS-PS2-2),(HS-PS2-3) RST.11-	Define appropriate quantities for the purpose of descriptive modeling. (HS-		
12.8	PS2-1), (HS-PS2-2),(HS-PS2-3) HSN-Q.A.2		
Write informative/explanatory texts, including the narration of historical events,	Choose a level of accuracy appropriate to limitations on measurement when		

GRADE: 9-12

scientific procedures/ experiments, or technical processes.(HS-PS2-1), (HS-PS2-		reporting quantities. (HS-PS2-1), (H	S-PS2-2),(HS-PS2-3) HSNQ.A.3
2),(HS-PS2-3) WHST.9- 12.2			
Conduct short as well as more sustained research projects to answer a question			
(including a self-generated question)	or solve a problem; narrow or broaden the		
inquiry when appropriate; synthesize	multiple sources on the subject,		
demonstrating understanding of the	subject under investigation. (HS-PS2-1), (HS-		
PS2-2),(HS-PS2-3) WHST.9-12.7			
Make strategic use of digital media (e	e.g., textual, graphical, audio, visual, and		
interactive elements) in presentation	s to enhance understanding of findings,		
reasoning, and evidence and to add in	nterest. (HS-PS2-1), (HS-PS2-2),(HS-PS2-3)		
SL.11-12.5			
Core Instructional Materials	Can include: NJCTL Presentations/Classwork, I	Lab Materials, etc.	
Career ready Practices	CRP 2, CRP 4, CRP 5, CRP 6, CRP 8 , CRP 9, CRP	2 12	
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8.1.12.E.1,	8.2.12.C.5	
	Modificat	ions	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Word walls	Word walls	Teacher tutoring	Curriculum compacting
Formula Displays	Visual aides	Peer tutoring	Challenge assignments
Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork
Annotation guides Assistive technology		Graphic organizers	Higher level questioning
Visual aides Notes/summaries		Extended time	Critical/Analytical thinking tasks
Modeling	Extended time		
Spanish Articles: NEWSELA Answer masking		Modified assignments	
Answer eliminator			
*All presentations and problems	Highlighter		
available entirely in Spanish.	Color contrast		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS

HS-PS2-1: Momentum

HS-PS2-1: Analyze data to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a

macroscopic object, its mass, and its acceleration.

Clarification Statement: Examples of data could include tables or graphs of position or velocity as a function of time for objects in motion, such as a falling object, an object rolling down a ramp, or a moving object being pulled by a constant force.

Assessment Boundary: Assessment is limited to one-dimensional motion and to macroscopic objects moving at non-relativistic speeds.

Evidence Statements: HS-PS2-1

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Analyzing and Interpreting Data	PS2.A: Forces and Motion	Cause and Effect
Analyzing data in 9–12 builds on K–8 and	Newton's second law accurately predicts changes in the motion	Empirical evidence is required to differentiate
progresses to introducing more detailed	of macroscopic objects.	between cause and correlation and make claims
statistical analysis, the comparison of data		about specific causes and effects.
sets for consistency, and the use of models to		
generate and analyze data.		
Analyze data using tools, technologies, and/or		
models (e.g., computational, mathematical) in		
order to make valid and reliable scientific		
claims or determine an optimal design		
solution.		
Connections to Nature of Science		
Science Models, Laws, Mechanisms, and		
Theories Explain Natural Phenomena		
Theories and laws provide explanations in		
science.		
Laws are statements or descriptions of the		
relationships among observable phenomena.		
Connections to other DCIs in this grade-band:	HS.PS3.C ; HS.ESS1.A ; HS.ESS1.C ; H.ESS2.C	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	5E Model
HS-PS2-1: Analyze d	ata to support the claim that Newton's second law of motion describes the mathematical relationship among the net force on a
macroscopic object,	its mass, and its acceleration.
Engage	Newton's Cradle Demonstration:
Anticipatory Set	This demonstration will allow students to observe how momentum is conserved through the use of a Newton's Cradle. The goal of this lab is for students to analyze how one raised Newton ball can transfer its momentum through multiple Newton balls. Students will observe that the system returns to rest due to the net impulse of the force of gravity over the time the system is in motion. Once the demonstration has concluded, teachers will ask discussion questions.
	For more information, see the following video: <u>https://youtu.be/hZieoKKqyPM</u>
	Tennis Ball/Basketball Demonstration:
	This demonstration will show students how momentum can be transferred between two objects in a closed system. Students will
	observe how two objects interact in terms of transfer of momentum when the mass of one object is significantly greater than that of
	the other object. The purpose of this demonstration is to relate transfer of momentum to conservation of momentum in a closed system.
	For more information see the following video: <u>https://youtu.be/Mwpu1yk0DEs</u>
Exploration	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Student Inquiry	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS2.A: Forces and Motion
	NJCTL Lessons:
	https://njctl.org/courses/science/algebra-based-physics/
	Daily lesson breakdown, unit plans, and pacing guides available.

Cliffside Park Public Schools

GRADE: 9-12

Explanation	Momentum is defined for a particular frame of reference; it is the mass times the velocity of the object.		
Concepts and Practices	If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balance		
	by changes in the momentum of objects outside the system.		
Elaboration	NJCTL Lessons:		
Extension Activity	Virtual simulations, PHET Labs, and Lab activities are provided.		
	- Momentum Observation Lab Discovery		
	- Explosion Lab Discovery		
	https://njctl.org/courses/science/algebra-based-physics/		
	NEWSELA articles (or other appropriate articles) should be used to enhance literacy skills of students and reinforce content vocabulary.		
Evaluation	Using the mathematical representations included in the above activities, students will support the claim that the momentum of the		
Assessment Tasks	system is the same before and after the interaction between the objects in the system, so that momentum of the system is constant.		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	PHYSICS	
HS-ETS1-3 Engineering Design		
HS-ETS1-3: Evaluate a solution to a complex real	-world problem based on prioritized criteria and trade-offs that	account for a range of constraints, including
cost, safety, reliability, and aesthetics as well as	possible social, cultural, and environmental impacts.	
Clarification Statement: N/A		
Assessment Boundary: N/A		
Evidence Statements: HS-ETS1-3		
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Constructing Explanations and Designing	ETS1.B: Developing Possible Solutions	Connections to Engineering, Technology, and
<u>Solutions</u>	When evaluating solutions, it is important to take into account a	Applications of Science
Constructing explanations and designing	range of constraints, including cost, safety, reliability, and	Influence of Science, Engineering, and
solutions in 9–12 builds on K–8 experiences and	aesthetics, and to consider social, cultural, and environmental	Technology on Society and the Natural
progresses to explanations and designs that are	impacts.	World
supported by multiple and independent student-		New technologies can have deep impacts on
generated sources of evidence consistent with		society and the environment, including some
scientific ideas, principles and theories.		that were not anticipated. Analysis of costs
Evaluate a solution to a complex real-world		and benefits is a critical aspect of decisions
problem, based on scientific knowledge, student-		about technology.
generated sources of evidence, prioritized		
criteria, and tradeoff considerations.		
Connections to other DCIs in this grade-band: Ea	rth and Space Science: HS-ESS3-2, HS-ESS3-4 Life Science: HS-LS2	2-7, HS-LS4-6
Articulation of DCIs across grade-bands: MS.ETS	1.A ; MS.ETS1.B	
NJSLS- ELA: RST.11-12.7, RST.11-12.8, RST.11-12.	9	
NJSLS- Math: MP.2, MP.4		
HS-ETS1-3 Engineering Design		
HS-ETS1-3: Evaluate a solution to a complex real	-world problem based on prioritized criteria and trade-offs that	account for a range of constraints, including
cost, safety, reliability, and aesthetics as well as possible social, cultural, and environmental impacts.		

Cliffside Park Public Schools

GRADE: 9-12

Clarification Statem	ent: N/A				
Assessment Bounda	iry: N/A				
	5E Model				
HS-PS2-2. Use	mathematical representations to support the claim that the total momentum of a system of objects is conserved when there is no				
net force on the sys	stem.				
	Conservation of Momentum in Explosions				
	The purpose of this experiment is to demonstrate conservation of momentum for two cars pushing away from each other.				
	http://www-lhs.beth.k12.pa.us/faculty/Hoffman_M/Expt%2004%20Conservation%20of%20Momentum%20Explosions.pdf				
Engage					
Anticipatory Set	Demonstration Video				
	https://www.youtube.com/watch?v=VZsTS1I5swl				
	Collision Lab : Introduction to One Dimension collisions				
	https://phet.colorado.edu/en/contributions/view/3339				
	A Collisions Lab				
	Students will be able to estimate the speed of an object by applying momentum conservation to collisions.				
	http://betterlesson.com/lesson/636409/a-collision-lab				
Exploration	Conservation of Momentum in Explosions				
Student Inquiry	The purpose of this experiment is to demonstrate conservation of momentum for two cars pushing away from each other.				
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.				
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.				
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):				
	PS2 A: Forces and Motion				

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	NJCTL Lessons:			
	https://njctl.org/courses/science/algebra-based-physics/			
	Daily lesson breakdown, unit plans, and pacing guides available.			
	a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced			
	by changes in the momentum of objects outside the system.			
	ETS1.A: Defining and Delimiting an Engineering Problem			
Explanation	Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and			
Concepts and Practices	they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary)			
	ETS1.C: Optimizing the Design Solution			
	Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of			
	certain criteria over others (trade-offs) may be needed. (secondary)			
	Related Activities:			
Elaboration	http://www.ck12.org/ngss/high-school-physical-sciences/motion-and-stability:-forces-and-interactions			
Extension Activity	http://www.physicsclassroom.com/NGSS-Corner/Force-and-Motion-DCIs-HS			
	In these above activities, teachers should evaluate students on their application of the engineering process which includes design,			
	evaluation and refinement.			
Evaluation				
Assessment Tasks				

PHYSICS
Motion and Stability: Forces and Interactions
HS-PS2-3: Apply scientific and engineering ideas to design, evaluate, and refine a device that minimizes the force on a macroscopic object during a collision
Clarification Statement: Examples of evaluation and refinement could include determining the success of the device at protecting an object from damage and
modifying the design to improve it. Examples of a device could include a football helmet or a parachute.

BOE APPROVAL: 8/2018

Evidence Statements: HS-DS2-2				
Science & Engineering Pract	tices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Constructing Explanations and Des	signing	PS2.A: Forces and Motion	Cause and Effect	
Solutions		If a system interacts with objects outside itself, the total momentum of	Systems can be designed to cause a	
Constructing explanations and design	gning	the system can change; however, any such change is balanced by	desired effect.	
solutions in 9–12 builds on K–8 exp	eriences	changes in the momentum of objects outside the system.		
and progresses to explanations and	d designs	ETS1.A: Defining and Delimiting an Engineering Problem		
that are supported by multiple and		Criteria and constraints also include satisfying any requirements set by		
independent student-generated sou	urces of	society, such as taking issues of risk mitigation into account, and they		
evidence consistent with scientific i	ideas,	should be quantified to the extent possible and stated in such a way		
principles and theories.		that one can tell if a given design meets them. (secondary)		
Evaluate a solution to a complex rea	al-world	ETS1.C: Optimizing the Design Solution		
problem, based on scientific knowle	edge,	Criteria may need to be broken down into simpler ones that can be		
student-generated sources of evide	ence,	approached systematically, and decisions about the priority of certain		
prioritized criteria, and tradeoff		criteria over others (trade-offs) may be needed. (secondary)		
<u>considerations.</u>				
Connections to other DCIs in this g	rade-band			
HS.PS3.B ; HS.ESS2.A				
Articulation of DCIs across grade-b	ands: MS.E	SS1.C ; MS.ESS2.A ; MS.ESS2.B		
NJSLS- ELA: RST.11-12.1, RST.11-12	2.8, WHST.9	9-12.2		
NJSLS- Math: MP.2, HSN-Q.A.1, HS	SN-Q.A.2, H	SN-Q.A.3		
		5E Model		
HS-PS2-3: Apply scientific and engi	ineering id	eas to design, evaluate, and refine a device that minimizes the force on	a macroscopic object during a collision.	
ngage Mythbusters Car Crash Force				
Anticipatory Set <u>https://wv</u>	Anticipatory Set https://www.youtube.com/watch?v=r8E5dUnLmh4			
Test Dumn	Test Dummy Hitting Deployed Airbag			
http://www.gettyimages.com/detail/video/crash-test-dummy-hitting-deployed-airbag-berlin-germany-stock-footage/103250356				

BOE APPROVAL: 8/2018

SUBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

GRADE: 9-12

Exploration	Crafting a Prototype to Protect An Egg During Freefall		
Student Inquiry	Students will utilize their understanding of momentum and collisions to create a prototype that prevents an egg from shattering upon		
	impact. http://betterlesson.com/lesson/637585/crafting-a-prototype-to-protect-an-egg-during-freefall		
	Hands-on Activity: Design a Bicycle Helmet		
	In this activity, students are introduced to the biomechanical characteristics of helmets, and are challenged to incorporate them into		
	designs for helmets used for various applications. By doing this, they come to understand the role of engineering associated with safety		
	products. The use of bicycle helmets helps to protect the brain and neck in the event of a crash. To do this effectively, helmets must		
	have some sort of crushable material to absorb the collision forces and a strap system to make sure the protection stays in place. The		
	exact design of a helmet depends on the needs and specifications of the user.		
	https://www.teachengineering.org/Activities/view/bicycle_helmet_activity		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
PS2.A: Forces and Motion			
Explanation	If a system interacts with objects outside itself, the total momentum of the system can change; however, any such change is balanced		
Concepts and Practices	by changes in the momentum of objects outside the system.		
	ETS1.A: Defining and Delimiting an Engineering Problem		
	Criteria and constraints also include satisfying any requirements set by society, such as taking issues of risk mitigation into account, and		
	they should be quantified to the extent possible and stated in such a way that one can tell if a given design meets them. (secondary)		
	ETS1.C: Optimizing the Design Solution		
	Criteria may need to be broken down into simpler ones that can be approached systematically, and decisions about the priority of		
	certain criteria over others (trade-offs) may be needed. (secondary)		
Elaboration	Related Activities:		
Extension Activity	http://www.ck12.org/ngss/high-school-physical-sciences/motion-and-stability:-forces-and-interactions		
	http://www.physicsclassroom.com/NGSS-Corner/Force-and-Motion-DCIs-HS		

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	Assessment Task A: In these above activities, teachers should evaluate students on their application of the engineering process which		
	includes design, evaluation and refinement.		
Evaluation			
Assessment Tasks			

Unit 6: Overview **UNIT 6: Electric & Magnetic Field and Force Content Area: Physics** Pacing: 22 Instructional days **Essential Questions** Electric Charge & Force 1. How many types of electric charge are there? What are they named? 2. Which particle of an atom carries a positive charge? Which carries the negative charge? 3. Why is it that when you take off a sweater in a dark room you can see tiny sparks and hear a crackling sound? 4. Compare and contrast Coulomb's Law with Newton's Law of Universal Gravitation. 5. A student touches an electroscope with his hand at the same time he brings a positively charged rod close to the electroscope without touching. When he removes his hand first and then moves the rod away from the electroscope the leaves move apart. Why? What type of charge is on the leaves? Electric Field and Potential 1. What is the definition of the Electric Field and what equation was used to derive this concept? 2. Why can Electric Field lines never cross or touch each other? Do Electric Field lines exist? 3. What is the significance of the density of the electric field lines about a charge? 4. How is the Electric Potential derived from the Electric Potential Energy?

BOE APPROVAL: 8/2018

5. What is an equipotential line? How does it relate to an Electric Field line?

Magnetism

1. Both Electric and Magnetic Forces will cause objects to repel and attract each other. What is a difference in the origin of these forces?

- 2. A Magnet has a north and a south pole. If you cut the magnet in half, describe what happens to each end of the two pieces.
- 3. Can you find a magnet with just a north pole?
- 4. What Field circles a current carrying wire?

Student Learning Objectives (Performance Expectations)

HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can produce an electric current.

HS-PS3-5: Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Unit Summary

- By the end of the Electric Charge & Force section of this unit, students will know:
- The two types of electric charges
- The law of conservation of charge
- How charges interact
- How to charge various object using conduction and induction By the end of this unit, students will be able to:
- Use Coulomb's Law to solve problems
- Make predictions about charges

By the end of the Electric Field & Potential section of this unit unit, students will know:

How to define electric fields and how they relate to electric force.

The relationship between electric potential, voltage and potential energy.

How charged objects respond to electric fields and potential differences.

By the end of the Electric Field & unit, students will be able to:

Use the following equations to solve problems: $\mathbb{P} = \mathbb{PP}/\mathbb{P}^2$, $\mathbb{P} = \mathbb{PP}/\mathbb{P}$, $\mathbb{PP} = \mathbb{PP}/\mathbb{P}$, $\mathbb{PP} = \mathbb{PP}/\mathbb{P}$, $\mathbb{PP} = \mathbb{PP}/\mathbb{P}$

BOE APPROVAL: 8/2018

By the end of the Magnetism section of this unit, students will know: How to determine the direction of the magnetic field created by a current carrying wire. How to determine the force exerted by a magnetic field on a moving charged particle or current carrying wire. By the end of the Magnetism section of this unit, students will be able to: Find the magnitude of the magnetic field created by a current carrying wire using: 2 = 20 2 222 Find the magnitude of the force exerted by a magnetic field on a current carrying wire using: 22 = 222 Find the magnitude of the force exerted by a magnetic field on a moving charge: 22 = 222 Find the magnitude of the force exerted by a magnetic field on a moving charge: 22 = 222 Find the magnitude of the force between two current carrying wires using: 22 = 20 21 22 2 222

Technical Terms

Magnetism, electric currents, electric energy, magnetic fields, electric fields, electric potential, magnetic force.

Formative & Summative Assessment Measures

During the Smart Notebook lesson designed to introduce concepts, students will be continually questioned on these concepts using a combination of class work/homework questions and the SMART Response system. Classwork and Homework questions will be discussed as a class and misconceptions will be addressed by the teacher prior to the formal evaluations listed below.

Electric Charge Lab Quiz Electric Charge and Force Test Electric Potential Energy and Voltage Quiz Electric Field and Potential Test Magnetic Field and Force Quiz Magnetism Test

Interdisciplinary Connections		
NJSLS- ELA	NJSLS- Mathematics	
Integrate and evaluate multiple sources of information presented in	Reason abstractly and quantitatively. (HS-PS4-1) MP.2	
diverse formats and media (e.g., quantitative data, video, multimedia)	Model with mathematics. (HS-PS4-1) MP.4	
in order to address a question or solve a problem. (HS-PS4-1) RST.11-	Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1) HSA-	
12.7	SSE.A.1	
	Choose and produce an equivalent form of an expression to reveal and explain properties	

GRADE: 9-12

of the quantity represented by the expression. (HS-PS4-1) HSASSE.B.3			
		Rearrange formulas to highlight a quantity of interest, using the same reasoning as in	
	solving equations. (HS-PS4-1) HSA.CED.A.4		
Core Instructional Materials	Can include: Textbooks Series, Lab N	laterials, etc.	
21st Century Life and Careers	CRP 1, CRP 5, CRP 6, CRP 7, CRP 8 , C	RP 9, CRP 11	
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12.E.1, 8	2.12.B.1, 8.2.12.C.5	
		Modifications	
English Language Learners	Special Education	At-Risk	Gifted and Talented
Word walls	Word walls	Teacher tutoring	Curriculum compacting
Formula Displays	Visual aides	Peer tutoring	Challenge assignments
Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks
Modeling	Extended time	Parent communication	
Spanish Articles: NEWSELA	Answer masking	Modified assignments	
	Answer eliminator		
*All presentations and	Highlighter		
problems available entirely in	Color contrast		
Spanish.			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

PHYSICS				
HS-PS2-5: Motion and Stability: Forces and Interactions				
HS-PS2-5: Plan and conduct an investigation to pr	HS-PS2-5: Plan and conduct an investigation to provide evidence that an electric current can produce a magnetic field and that a changing magnetic field can			
produce an electric current.	produce an electric current.			
Clarification Statement: N/A				
Assessment Boundary: Assessment is limited to designing and conducting investigations with provided materials and tools.				
Evidence Statements: HS-PS2-5				
Science & Engineering Practices Disciplinary Core Ideas Cross-Cutting Concepts				
Planning and Carrying Out Investigations	PS2.B: Types of Interactions	Cause and Effect		
Planning and carrying out investigations to answer	Newton's law of universal gravitation and Coulomb's	Empirical evidence is required to differentiate		
questions or test solutions to problems in 9–12	law provide the mathematical models to describe and	between cause and correlation and make claims		
builds on K–8 experiences and progresses to	predict the effects of gravitational and electrostatic	about specific causes and effects.		
include investigations that provide evidence for	forces between distant objects.			
and test conceptual, mathematical, physical and	Forces at a distance are explained by fields			
empirical models.	(gravitational, electric, and magnetic) permeating space			
Plan and conduct an investigation individually and	that can transfer energy through space. Magnets or			
collaboratively to produce data to serve as the	electric currents cause magnetic fields; electric charges			

BOE APPROVAL: 8/2018

basis for evidence, and in	n the design: decide on	or changing magnetic fields cause electric fields.		
types, how much, and accuracy of data needed to PS3.A: Definitions of Energy				
produce reliable measur	ements and consider	"Electrical energy" may mean energy stored in a		
limitations on the precisi	ion of the data (e.g.,	battery or energy transmitted by electric currents.		
number of trials, cost, ris	sk, time), and refine the	(secondary)		
design accordingly.				
Connections to other DO	Cls in this grade-band: HS.	PS3.A ; HS.PS4.B ; HS.ESS2.A		
Articulation of DCIs acro	oss grade-bands: MS.PS1.A	A; MS.PS2.B; MS.ESS1.B		
NJSLS- ELA: WHST.11-12	.7, WHST.11-12.8, WHST.	11-12.9		
NJSLS- Math: HSN.Q.A.1	NJSLS- Math: HSN.Q.A.1, HSN.Q.A.2, HSN.Q.A.3			
		5E Model		
HS-PS2-5: Plan and cond	luct an investigation to pr	ovide evidence that an electric current can produce a n	nagnetic field and that a changing magnetic field can	
produce an electric curr	ent.			
	Understanding Electron	nagnetic Induction		
Engage	https://www.youtube.c	com/watch?v=tC6E9J925pY		
Anticipatory Set	DC Motor: How it Work	<u>s</u>		
	https://www.youtube.c	com/watch?v=LAtPHANEfQo		
	Faraday Law and Electro	omagnet Lab		
Using this simulation, students will predict how the current will change when the conditions are varied. They will then design an experiment to determine how the size and direction of the induced current will change when the conditions are varied. Collect dat			e conditions are varied. They will then design an	
			Exploration make observations and record your information in a	
Student Inquiry	table.			
	https://phet.colorado.edu/en/contributions/view/2827			
	Magnetic Field Investig	ation		
	In this lab you will inves	stigate the properties of magnetic fields around a bar ma	agnet.	

	Lab Worksheet: https://phet.colorado.edu/services/download-
	servlet?filename=%2Factivities%2F3903%2FPhET_NGSS+Fields+2+Student+Sheet+-+Understand+and+Draw.pdf
	Simulation: https://phet.colorado.edu/en/simulation/electric-hockey
	Magnetism and Electricity Lab
	In this activity, students will be charged with building a better electromagnet.
	http://hendrix2.uoregon.edu/~dlivelyb/phys101/lab7_s07.pdf
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
Evaluation	PS2.B: Types of Interactions
Explanation	Newton's law of universal gravitation and Coulomb's law provide the mathematical models to describe and predict the effects of
concepts and Practices	gravitational and electrostatic forces between distant objects.
	Forces at a distance are explained by fields (gravitational, electric, and magnetic) permeating space that can transfer energy through
	space. Magnets or electric currents cause magnetic fields; electric charges or changing magnetic fields cause electric fields.
	PS3.A: Definitions of Energy
	"Electrical energy" may mean energy stored in a battery or energy transmitted by electric currents. (secondary)
Flaboration	Explaining Electrical Conductivity in Neurons
Endpoint activity	Neurons are specialized to conduct electrical impulses using varied ion concentrations.
Extension Activity	https://www.youtube.com/watch?v=bS_N-nMiqnM How transformers work
	Assessment Task A: Faraday Law and Electromagnet Lab
Evaluation	Students will be assessed on their experimental design.
Assessment Tasks	Assessment Task B: Magnetism and Electricity Lab
	Students will be assessed on the effectiveness of the electromagnet that they improve.

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

HS-PS3-5: Energy

HS-PS3-5: Develop and use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in energy of the objects due to the interaction.

Clarification Statement: Examples of models could include drawings, diagrams, and texts, such as drawings of what happens when two charges of opposite polarity are near each other.

Assessment Boundary: Assessment is limited to systems containing two objects.

Evidence Statements: HS-PS3-5

Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts
Developing and Using Models	PS3.C: Relationship Between Energy and Forces	Cause and Effect
Modeling in 9–12 builds on K–8 and progresses to using,	When two objects interacting through a field change	Cause and effect relationships can be
synthesizing, and developing models to predict and show	relative position, the energy stored in the field is	suggested and predicted for complex natural
relationships among variables between systems and	changed.	and human designed systems by examining
their components in the natural and designed worlds.		what is known about smaller scale
Develop and use a model based on evidence to illustrate		mechanisms within the system.
the relationships between systems or between		
components of a system.		

Cliffside Park Public Schools

GRADE: 9-12

Connections to other	DCIs in this grade-band: HS.PS2.B	
Articulation of DCIs across grade-bands: MS.PS2.B ; MS.PS3.C		
NJSLS- ELA: WHST.9-1	2.7, WHST.11-12.8, WHST.9-12.9, SL.11-12.5	
NJSLS- Math: MP.2, N	1P.4	
HS-PS3-5: Develop an energy of the objects	5E Model d use a model of two objects interacting through electric or magnetic fields to illustrate the forces between objects and the changes in due to the interaction.	
Engage Anticipatory Set	Force on a Charged Particle Moving in A Magnetic Field https://www.youtube.com/watch?v=Gdh2srqH57M&list=PL66BFE4ED235C44D7 What Will Happen When the Earth's Magnetic Field Reverse http://www.smithsonianmag.com/science-nature/what-will-happen-when-earths-magnetic-field-begins-reverse-180951166/?no-ist	
Exploration Student Inquiry	Electric Field Lab The objective of this lab is to explore electric field based on different charge configurations. https://phet.colorado.edu/en/contributions/view/3992 Electric Field Hockey Determine the variables that affect how charged bodies interact and predict how charged bodies will interact. https://phet.colorado.edu/en/contributions/view/2853	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
Concepts and Practices	es Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS3.C: Relationship Between Energy and Forces		
	When two objects interacting through a field change relative position, the energy stored in the field is changed.		
	Drifting Into Current		
Elaboration	Students discover the definitions of current and drift speed in a reading exploration activity.		
Extension Activity	http://betterlesson.com/lesson/641911/drifting-into-current		
	http://www.smithsonianmag.com/science-nature/what-will-happen-when-earths-magnetic-field-begins-reverse-180951166/?no-ist		
	Assessment Task A: Electric Field Lab		
	https://phet.colorado.edu/en/contributions/view/3992		
Evoluction	Student should use their models (drawings/diagrams) to:		
Assessment Tasks	Determine whether the energy stored in the field increased, decreased or remained the same when the objects interacted		
	Support the claim that the change in the energy stored in the field is consistent with the change in energy of the objects		
	Describe the cause and effect relationships on a qualitative level between forces produced by electric or magnetic fields and the		
	change of energy of the objects in the system.		

Unit 7: Overview			
Unit 7: Waves			
Content Area: Physics			
Pacing: 20 Instructional days			
Essential Question			
How are waves used to transfer energy and send and store information?			
Student Learning Objectives (Performance Expectations)			
HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in			
various media.			
HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the idea that electromagnetic radiation can be described either by a wave model or a particle			

BOE APPROVAL: 8/2018

model, and that for some situations one model is more useful than the other.

Unit Summary

In this unit of study, students apply their understanding of how wave properties can be used to transfer information across long distances, store information, and investigate nature on many scales. The crosscutting concept of cause and effect is highlighted as an organizing concept for these disciplinary core ideas. Students are expected to demonstrate proficiency in using mathematical thinking, and to use this practice to demonstrate understanding of the core idea.

Technical Terms

Frequency, wavelength, crests, troughs, speed, amplitude, nodes, antinodes, seismic waves, mechanical waves, Electromagnetic Radiation Unit (ERU), P-Waves, S-Waves, longitudinal waves , transverse waves , surface waves, energy transmission, reflection, infraction, absorption, diffraction resonance, tsunami, plate tectonics

Formative Assessment Measures

Part A: Why do physicists make the best surfers? How do we know what the inside of the Earth looks like?

Students who understand the concepts are able to:

Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Use algebraic relationships to quantitatively describe relationships among the frequency, wavelength, and speed of waves traveling in various media.

Interdisciplinary Connections

NJSLS- ELA	NJSLS- Mathematics
Integrate and evaluate multiple sources of information presented in	Reason abstractly and quantitatively. (HS-PS4-1) MP.2
diverse formats and media (e.g., quantitative data, video, multimedia)	Model with mathematics. (HS-PS4-1) MP.4
in order to address a question or solve a problem. (HS-PS4-1) RST.11-	Interpret expressions that represent a quantity in terms of its context. (HS-PS4-1) HSA-
12.7	SSE.A.1
	Choose and produce an equivalent form of an expression to reveal and explain properties
	of the quantity represented by the expression. (HS-PS4-1) HSASSE.B.3
	Rearrange formulas to highlight a quantity of interest, using the same reasoning as in
	solving equations. (HS-PS4-1) HSA.CED.A.4

Core Instructional Materials	Can include: NJCTL Presentations/Classwork, Lab Materials, etc.			
Career ready Practices	CRP 1, CRP 2, CRP 4, CRP 5, CRP 6, CRP 9, CRP 11, CRP 12			
Technology Standards	8.1.12,.A.1, 8.1.12.A.2, 8.1.12A.3, 8.1.12.E.1, 8.2.12.C.5			
Modifications				

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

English Language Learners	Special Education	At-Risk	Gifted and Talented
Word walls	Word walls	Teacher tutoring	Curriculum compacting
Formula Displays	Visual aides	Peer tutoring	Challenge assignments
Bilingual translation	Multimedia	Study guides	Tiered activities
Highlight key vocabulary	Leveled readers: NEWSELA	Heterogeneous Groups	Collaborative teamwork
Annotation guides	Assistive technology	Graphic organizers	Higher level questioning
Visual aides	Notes/summaries	Extended time	Critical/Analytical thinking tasks
Modeling	Extended time	Parent communication	
Spanish Articles: NEWSELA	Answer masking	Modified assignments	
	Answer eliminator		
*All presentations and	Highlighter		
problems available entirely in	Color contrast		
Spanish.			

PHYSICS						
HS-PS4-1: Waves and their Applications in Technologies for Information Transfer						
HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in						
various media.						
Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water,						
and seismic waves traveling through the Earth.						
Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.						
Evidence Statements: HS-PS4-1						
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts				
Using Mathematics and Computational Thinking	PS4.A: Wave Properties	Cause and Effect				

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Mathematical and comp	utational thinking at the 9-12 level	The wavelength and frequency of a wave are related to	Empirical evidence is required to	
builds on K-8 and progre	sses to using algebraic thinking and	one another by the speed of travel of the wave, which	differentiate between cause and	
analysis, a range of linea	r and nonlinear functions including	depends on the type of wave and the medium through	correlation and make claims about	
trigonometric functions,	exponentials and logarithms, and	which it is passing.	specific causes and effects.	
computational tools for	statistical analysis to analyze,			
represent, and model da	ta. Simple computational			
simulations are created a	and used based on mathematical			
models of basic assumpt	ions.			
Use mathematical repres	sentations of phenomena or design			
solutions to describe and	d/or support claims and/or			
explanations.				
Connections to other DCIs in this grade-band: HS.ESS2.A				
Articulation of DCIs across grade-bands: MS.PS4.A ; MS.PS4.B				
NJSLS- ELA: RST.11-12.7				
NJSLS- Math: MP.2 , MP.4 , HSA-SSE.A.1 , HSA-SSE.B.3 , HSA.CED.A.4				
		5E Model		
HS-PS4-1: Use mathema	tical representations to support a c	laim regarding relationships among the frequency, wave	length, and speed of waves traveling in	
various media.				
GCSE Science Revision - Types of Waves				
Engage Anticipatory Set	https://www.youtube.com/watch?v=w2s2fZr8sqQ			
	Radio Waves & Electromagnetic Fields			
	Students will investigate how radio broadcasting and radio receivers work.			
	https://phet.colorado.edu/services/download-servlet?filename=%2Factivities%2F3084%2FHW11_SIM.pdf			

	Making Waves and Determining Mathematical Relationships		
Exploration	Students make waves and find an important relationship between variables.		
Student Inquiry	http://betterlesson.com/lesson/639696/making-waves-and-determining-mathematical-relationships		
	Wave Lab Stations Day 1		

BOE adopted 5/2017

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	Students participate in lab stations about the wave phenomena.		
	http://betterlesson.com/lesson/639703/wave-lab-stations-day-1		
	Wave Lab Stations Day 2		
	Students will be able to identify the wave phenomena occurring at each station in the lab.		
	http://betterlesson.com/lesson/639704/wave-lab-stations-day-2		
	In these lessons		
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.		
Explanation Concepts and Practices	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.		
	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):		
	PS4.A: Wave Properties		
	The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of		
	wave and the medium through which it is passing.		
	Measuring the Speed of Sound		
Elaboration	What is the speed of sound in our classroom? Today, students find out!		
Extension Activity	http://betterlesson.com/lesson/640789/measuring-the-speed-of-sound		
	Assessment Task A: Making Waves Activity		
	Students will use mathematical relationships to support their claims regarding the relationships between frequency, speed and		
Evaluation	wavelength.		
Assessment Tasks	Using the mathematical relationship, students assess claims about any of the three quantities when the other two quantities are		
	known for waves traveling in various specified media.		
	Students use the mathematical relationships to distinguish between cause and correlation with respect to the supported claims.		

PHYSICS HS-PS4-1: Waves and their Applications in Technologies for Information Transfer HS-PS4-1: Use mathematical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in various media. Clarification Statement: Examples of data could include electromagnetic radiation traveling in a vacuum and glass, sound waves traveling through air and water,

BOE APPROVAL: 8/2018

and seismic waves traveling through the Earth.			
Assessment Boundary: Assessment is limited to algebraic relationships and describing those relationships qualitatively.			
Evidence Statements: HS-PS4-1			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Using Mathematics and Computational Thinking Mathematical and computational thinking at the 9-12 level builds on K-8 and progresses to using algebraic thinking and analysis, a range of linear and nonlinear functions including trigonometric functions, exponentials and logarithms, and computational tools for statistical analysis to analyze, represent, and model data. Simple computational simulations are created and used based on mathematical models of basic assumptions. Use mathematical representations of phenomena or design solutions to describe and/or support claims and/or	PS4.A: Wave Properties The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of wave and the medium through which it is passing.	Cause and Effect Empirical evidence is required to differentiate between cause and correlation and make claims about specific causes and effects.	
Connections to other DCIs in this grade-band: HS.ESS2.A Articulation of DCIs across grade-bands: MS.PS4.B NJSLS- ELA: RST.11-12.7 NJSLS- Math: MP.2 , MP.4 , HSA-SSE.A.1 , HSA-SSE.B.3 , HSA.CED.A.4			

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	5E Model
HS-PS4-1: Use mathema	itical representations to support a claim regarding relationships among the frequency, wavelength, and speed of waves traveling in
various media.	
Engage	GCSE Science Revision - Types of Waves
	https://www.youtube.com/watch?v=w2s2fZr8sqQ
	Radio Waves & Electromagnetic Fields
Anticipatory Set	Students will investigate how radio broadcasting and radio receivers work.
	https://phet.colorado.edu/services/download-servlet?filename=%2Factivities%2F3084%2FHW11_SIM.pdf
	Making Waves and Determining Mathematical Relationships
	Students make waves and find an important relationship between variables.
	http://betterlesson.com/lesson/639696/making-waves-and-determining-mathematical-relationships
Exploration	Wave Lab Stations Day 1
Student Inquiry	Students participate in lab stations about the wave phenomena.
ocadene inquiry	http://betterlesson.com/lesson/639703/wave-lab-stations-day-1
	Wave Lab Stations Day 2
	Students will be able to identify the wave phenomena occurring at each station in the lab.
	http://betterlesson.com/lesson/639704/wave-lab-stations-day-2
	In these lessons
	Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities.
Explanation	Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices.
Concepts and Practices	Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas):
	PS4.A: Wave Properties
	The wavelength and frequency of a wave are related to one another by the speed of travel of the wave, which depends on the type of
	wave and the medium through which it is passing.
Flaboration	Measuring the Speed of Sound
	What is the speed of sound in our classroom? Today, students find out!
Extension Activity	http://betterlesson.com/lesson/640/89/measuring-the-speed-of-sound
1	

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

	Assessment Task A: Making Waves Activity		
	Students will use mathematical relationships to support their claims regarding the relationships between frequency, speed and		
Evaluation	wavelength.		
Assessment Tasks	Using the mathematical relationship, students assess claims about any of the three quantities when the other two quantities are		
	known for waves traveling in various specified media.		
	Students use the mathematical relationships to distinguish between cause and correlation with respect to the supported claims.		

	PHYSICS		
HS-PS4-3: Waves and their Applications in Technologies for Information	ion Transfer		
HS-PS4-3: Evaluate the claims, evidence, and reasoning behind the id	ea that electromagnetic radiation can be described	either by a wave model or a particle	
model, and that for some situations one model is more useful than the	ne other.		
Clarification Statement: Emphasis is on how the experimental evidence	e supports the claim and how a theory is generally m	nodified in light of new evidence.	
Examples of a phenomenon could include resonance, interference, dif	fraction, and photoelectric effect.		
Assessment Boundary: Assessment does not include using quantum theory.			
Evidence Statements: HS-PS4-3			
Science & Engineering Practices	Disciplinary Core Ideas	Cross-Cutting Concepts	
Engaging in Argument from Evidence	PS4.A: Wave Properties	Systems and System Models	
Engaging in argument from evidence in 9–12 builds on K–8	[From the 3–5 grade band endpoints] Waves can	Models (e.g., physical, mathematical,	
experiences and progresses to using appropriate and sufficient	add or cancel one another as they cross, depending	computer models) can be used to	
evidence and scientific reasoning to defend and critique claims and	on their relative phase (i.e., relative position of	simulate systems and interactions—	
explanations about natural and designed worlds. Arguments may also	peaks and troughs of the waves), but they emerge	including energy, matter, and	
come from current scientific or historical episodes in science.	unaffected by each other. (Boundary: The	information flows—within and	
Evaluate the claims, evidence, and reasoning behind currently	discussion at this grade level is qualitative only; it	between systems at different scales.	
accepted explanations or solutions to determine the merits of	can be based on the fact that two different sounds		
arguments.	can pass a location in different directions without		
Connections to Nature of Science	getting mixed up.)		
Science Models, Laws, Mechanisms, and Theories Explain Natural	PS4.B: Electromagnetic Radiation		

BOE adopted 5/2017

Cliffside Park Public Schools

GRADE: 9-12

BOE APPROVAL: 8/2018

Phenomena		Electromagnetic radiation (e.g., radio, microwaves,	
A scientific theory is a su	bstantiated explanation of some aspect of	light) can be modeled as a wave of changing electric	
the natural world, based	on a body of facts that have been repeatedly	and magnetic fields or as particles called photons.	
confirmed through obse	rvation and experiment and the science	The wave model is useful for explaining many	
community validates ead	ommunity validates each theory before it is accepted. If new features of electromagnetic radiation, and the		
evidence is discovered that the theory does not accommodate, the		particle model explains other features.	
theory is generally modi	fied in light of this new evidence.		
Connections to other DO	Cls in this grade-band: HS.PS3.D ; HS.ESS1.A ;	HS.ESS2.D	
Articulation of DCIs acro	oss grade-bands: MS.PS4.B		
NJSLS- ELA: RST.9-10.8,	RST.11-12.1, RST.11-12.8		
NJSLS- Math: MP.2, HSA	-SSE.A.1, HSA-SSE.B.3, HSA.CED.A.4		
		5E Model	
HS-PS4-3: Evaluate the o	claims, evidence, and reasoning behind the id	ea that electromagnetic radiation can be described	either by a wave model or a particle
model, and that for som	e situations one model is more useful than the	ne other.	
Engage	Do Cellphones Cause Brain Tumors?		
Anticipatory Set	https://www.youtube.com/watch?v=wU5XkhUGzBs		
	Electromagnetic Investigations- Day 1		
	It's important to balance theory with observations and to provide evidence for any claim. Students will apply this thinking to four big		
	ideas in electromagnetics.		
	http://betterlesson.com/lesson/636830/electromagnetic-investigations-day-1		
Exploration	Electromagnetic Investigations- Day 2		
Student Inquiry	It is important to balance theory with observation - particularly, as is the case with electromagnetics, when the theory is not intuitive.		
Student inquiry	http://betterlesson.com/lesson/636213/electromagnetic-investigations-day-2		
	Electromagnetic Investigations- Day 3		
	It's important to balance theory with observations and to provide evidence for any claim. Students will apply this thinking to four big		
	ideas in electromagnetics.		
	http://betterlesson.com/lesson/637306/elect	tromagnetic-investigations-day-3	
Explanation	In these lessons		

BOE adopted 5/2017

BOE APPROVAL: 8/2018

UBJECT: SCIENCE/PHYSICS

Cliffside Park Public Schools

GRADE: 9-12

Concepts and Practices Teachers Should: Introduce formal labels, definitions, and explanations for concepts, practices, skills or abilities. Students Should: Verbalize conceptual understandings and demonstrate scientific and engineering practices. Topics to Be Discussed in Teacher Directed Lessons (Disciplinary Core Ideas): PS4.A: Wave Properties [From the 3–5 grade band endpoints] Waves can add or cancel one another as they cross, depending on their relative phase (i.e., relative position of peaks and troughs of the waves), but they emerge unaffected by each other. (Boundary: The discussion at this grade level is qualitative only; it can be based on the fact that two different sounds can pass a location in different directions without getting mixed up.) PS4.B: Electromagnetic Radiation Electromagnetic radiation (e.g., radio, microwaves, light) can be modeled as a wave of changing electric and magnetic fields or as particles called photons. The wave model is useful for explaining many features of electromagnetic radiation, and the particle model explains other features. A Closer Look at Photoelectric Effect Elaboration Data from different metals show similarities and differences in the photoelectric effect, highlighting fundamental physics phenomena. Extension Activity http://betterlesson.com/lesson/638454/a-closer-look-at-photoelectricity Assessment Task A: Electromagnetic Investigations Following this three day investigation, students should: Evaluate the given evidence for interference behavior of electromagnetic radiation to determine how it supports the argument that electromagnetic radiation can be described by a wave model. Evaluation Evaluate the phenomena of the photoelectric effect to determine how it supports the argument that electromagnetic radiation can be Assessment Tasks described by a particle model. Evaluate the given claims and reasoning for modeling electromagnetic radiation as both a wave and a particle, considering the transfer of energy and information within and between systems, and why for some aspects the wave model is more useful and for other aspects the particle model is more useful to describe the transfer of energy and information.